preplogic

Notes for the course "elementary logic"
git clone https://git.tronto.net/preplogic
Download | Log | Files | Refs | README

preplogic-slides.tex (14094B)


      1 \documentclass[11pt]{beamer}
      2 \usetheme{Madrid}
      3 \usepackage[utf8]{inputenc}
      4 \usepackage{amsmath}
      5 \usepackage{amsfonts}
      6 \usepackage{amssymb}
      7 \usepackage{setspace}
      8 \author{Sebastiano Tronto}
      9 \title{Elementary Logic (PrepCamp)}
     10 %\setbeamercovered{transparent} 
     11 %\setbeamertemplate{navigation symbols}{} 
     12 \logo{\includegraphics[scale=0.065]{unilu.jpg}} 
     13 \institute{uni.lu} 
     14 \date{September 13-14, 2021} 
     15 %\subject{}
     16 
     17 \newtheorem {proposition}{Proposition}
     18 \theoremstyle{definition}
     19 \newtheorem {remark}{Remark}
     20 \newtheorem {exercise}{Exercise}
     21 
     22 
     23 \newcommand{\refgithub}{
     24     \textbf{Slides and exercises:} \\
     25     \hspace{20pt}\texttt{https://github.com/sebastianotronto/preplogic} \\
     26     \textbf{Email:} \\
     27     \hspace{20pt}\texttt{sebastiano.tronto@uni.lu}
     28 }
     29 
     30 \begin{document}
     31 
     32 \begin{frame}
     33 \titlepage
     34 \end{frame}
     35 
     36 \begin{frame}
     37     \tableofcontents
     38     \refgithub
     39 \end{frame}
     40 
     41 
     42 \section{Statements}
     43 \begin{frame}{Statements}
     44 \begin{itemize}
     45     \pause
     46  \item Unambiguous
     47    \pause
     48 \begin{example}[A bad joke]
     49 \textbf{Q:} How many months have 30 days?
     50 \pause
     51 
     52 \textbf{A:} 11, some of them have even more!
     53 \pause
     54 
     55 :-(
     56 \end{example}
     57 \pause
     58  \item Objective
     59    \pause
     60 \begin{example}
     61 \textbf{Good:} 3 is greater than 4
     62 
     63 \textbf{Bad:} 3 is nicer than 4
     64 \end{example}
     65 \end{itemize}
     66 \end{frame}
     67 
     68 \begin{frame}{Statements}
     69   \begin{itemize}
     70  \item Mathematical: ``\emph{Three is greater than four}\,''
     71                     (or ``$3 > 4$'')
     72  \item ...or not: ``\emph{I am 26 years old}\,''
     73  \item \textbf{Key point:} staments can be \textbf{true} or
     74                      \textbf{false}
     75 \end{itemize}
     76 \end{frame}
     77 
     78 %\begin{frame}[plain]
     79 %\begin{center}
     80 %\includegraphics[scale=0.4]{xkcd169.png}
     81 %https://xkcd.com/169/
     82 %\end{center}
     83 %\end{frame}
     84 
     85 
     86 \section{Logical operations}
     87 
     88 \begin{frame}{Logical operations}
     89 \begin{itemize}
     90 \item We can combine statements to make new ones
     91 \item Negation (\textbf{not}), conjunction (\textbf{and}), disjunction
     92       (\textbf{or})
     93 \end{itemize}
     94 \end{frame}
     95 
     96 \begin{frame}{Negation (\textbf{not})}
     97 \begin{center}
     98 If $A$ is a statement, the statement ``not $A$'' (in symbols: $\neg A$) is
     99 \textbf{true} when $A$ is \textbf{false}, and it is \textbf{false} when $A$ is
    100 \textbf{true}.
    101 \pause
    102 \end{center}
    103 
    104 \begin{example}
    105 \begin{center}
    106 $\neg (3>4)$ is equivalent to $3\leq 4$
    107 
    108 ``\emph{$3$ is \textbf{not} greater than $4$}'' is equivalent to
    109 ``\emph{$3$ is less or equal than $4$}''
    110 \end{center}
    111 \end{example}
    112 \end{frame}
    113 
    114 \begin{frame}{Conjunction (\textbf{and})}
    115 \begin{center}
    116 The statement ``$A$ and $B$'' (in symbols:
    117 $A\land B$) is \textbf{true} when both $A$ and $B$ are \textbf{true}, and it is
    118 \textbf{false} if at \emph{at least} one of them is \textbf{false}.
    119 \pause
    120 
    121 \begin{example}
    122 ``$(3<4)\land (5$ is an odd number$)$'' is \textbf{true}
    123 \end{example}
    124 
    125 \begin{example}
    126 ``(Today is Monday) $\land$ (we are in France)'' is \textbf{false}
    127 \end{example}
    128 \end{center}
    129 
    130 \end{frame}
    131 
    132 \begin{frame}{Disjunction (\textbf{or})}
    133 \begin{center}
    134 The statement ``$A$ or $B$'' (in symbols:
    135 $A\lor B$) is \textbf{true} when at least one of $A$ and $B$ is \textbf{true},
    136 and it is \textbf{false} if both of them are \textbf{false}.
    137 \pause
    138 
    139 \begin{example}
    140 ``$(3=4)\lor (5$ is an even number$)$'' is \textbf{false}
    141 \end{example}
    142 
    143 \begin{example}
    144 ``(Today is Monday) $\lor$ (we are in Luxembourg)'' is \textbf{true}
    145 \end{example}
    146 \end{center}
    147 
    148 \end{frame}
    149 
    150 
    151 \begin{frame}{Logical operations}
    152 \begin{itemize}
    153   \item \textbf{Important:} $\lor$ is always \emph{inclusive}:
    154    \pause
    155 
    156 \begin{center}
    157 \begin{example}[Another bad joke]
    158 Waiter: ``Would you like cheese or dessert?''
    159 
    160 Mathematician: ``Yes.''
    161 \end{example}
    162 \end{center}
    163 \pause
    164  \item $\neg$ has precedence over $\land$ and $\lor$:
    165     \begin{align*}
    166       \neg A\land B \text{ means } (\neg A)\land B,\qquad
    167       \neg A\lor B \text{ means } (\neg A)\lor B
    168     \end{align*}
    169     (or just use parenthesis)
    170 \end{itemize}
    171 
    172 
    173 \end{frame}
    174 
    175 \begin{frame}{Properties}
    176   \begin{center}
    177     If $A$, $B$ and $C$ are statements:
    178   \end{center}
    179   {\fontsize{9}{17}\selectfont
    180   \begin{align*}
    181     \begin{array}{cc|c}
    182       A\land B = B\land A & A \lor B = B\lor A &\textbf{commutativity}\\
    183       \hline
    184       A\land (B\land C) = (A\land B)\land C \quad &
    185       A\lor (B\lor C) = (A\lor B)\lor C & \textbf{associativity}\\
    186       \hline
    187       A\land(B\lor C) = (A\land B)\lor(A\land C) & & \textbf{distributivity} \\
    188       A\lor(B\land C) = (A\lor B)\land(A\lor C) & &\textbf{distributivity*}  \\
    189       \hline
    190       \neg(\neg A) = A & & \textbf{double negation} \\
    191       \hline
    192       A \land \textbf{true} = A & A \land \textbf{false} = \textbf{false} \\
    193       A\lor \textbf{true} = \textbf{true} & A \lor \textbf{false} = A \\
    194       (\neg A) \land A = \textbf{false} & (\neg A) \lor A = \textbf{true} \\
    195       \hline
    196       \neg (A\land B) = (\neg A)\lor (\neg B) &
    197       \neg (A\lor B) = (\neg A)\land (\neg B) & \textbf{De Morgan's laws}
    198     \end{array}
    199   \end{align*}}
    200 \end{frame}
    201 
    202 %\subsection{Boolean algebra}
    203 
    204 \begin{frame}{Boolean algebra}
    205   \begin{itemize}
    206     \item For simplicity: \textbf{true}\,$=1$, \textbf{false}\,$=0$
    207     \pause \item We have a set $\{0,1\}$ with some operations
    208                  $(\land,\lor,\neg)$
    209     \pause \item This is called a \textbf{Boolean algebra}
    210   \end{itemize}
    211 \end{frame}
    212 
    213 %\subsection{Truth tables}
    214 
    215 \begin{frame}{Truth tables}
    216   A compact way of describing an operator, or a composition of operators
    217   \pause
    218   \vspace{4pt}
    219   Example:
    220 \begin{align*}
    221   \begin{array}{|c|c|c|c|c|c|}
    222     \hline
    223     A & B & \neg A & A\land B & A\lor B & (A\lor B)\land (\neg A)  \\
    224     \hline
    225     0 & 0 & 1 & 0 & 0 & 0 \\
    226     0 & 1 & 1 & 0 & 1 & 1 \\
    227     1 & 0 & 0 & 0 & 1 & 0 \\
    228     1 & 1 & 0 & 1 & 1 & 0 \\
    229     \hline
    230   \end{array}
    231 \end{align*}
    232 \end{frame}
    233 
    234 \begin{frame}{Truth tables}
    235   \begin{center}
    236     We can check that two statements are equivalent with truth tables
    237   \end{center}
    238 \begin{align*}
    239   \begin{array}{|c|c|c|c|}
    240     \hline
    241     A & B & \neg(A\land B) & (\neg A)\lor (\neg B)\\
    242     \hline
    243     0 & 0 & 1 & 1 \\
    244     0 & 1 & 1 & 1 \\
    245     1 & 0 & 1 & 1 \\
    246     1 & 1 & 0 & 0 \\
    247     \hline
    248   \end{array}
    249 \end{align*}
    250 \end{frame}
    251 
    252 
    253 \section{Implication}
    254 
    255 \begin{frame}{Implication}
    256   \begin{itemize}
    257   \item ``$A\implies B$'' means \emph{``If $A$ (is true), then $B$ (is true)''}
    258   \end{itemize}
    259   \pause
    260   \begin{example}
    261     \emph{``If it rains, I will bring an umbrella''}
    262 
    263     (It rains)$\implies$(I will bring an umbrella)
    264   \end{example}
    265   \pause
    266   \begin{example}
    267     \emph{``If my grandpa had wheels, he would be a bike''}
    268 
    269     (My grandpa has wheels)$\implies$(My grandpa is a bike)
    270   \end{example}
    271 \end{frame}
    272 
    273 
    274 \begin{frame}{Implication}
    275     \begin{itemize}
    276     \item It is a logical operation: ``$A\implies B$'' means ``$B\lor(\neg A)$''
    277       \pause
    278     \end{itemize}
    279   \begin{align*}
    280     \begin{array}{|c|c|c|c|}
    281       \hline
    282       A & B & A\implies B & \\
    283       \hline
    284       0 & 0 & 1 & \text{No rain, I don't bring an umbrella} \\
    285       \hline
    286       0 & 1 & 1 & \text{No rain, I bring an umbrella anyway} \\
    287       \hline
    288       1 & 0 & 0 & \text{It rains, I don't bring an umbrella} \\
    289       \hline
    290       1 & 1 & 1 & \text{It rains, I bring an umbrella} \\
    291       \hline
    292     \end{array}
    293   \end{align*}
    294   \pause
    295   \begin{remark}
    296     ``\textbf{false} $\implies A$'' is always \textbf{true}, whatever $A$ is
    297     (\emph{ex falso quodlibet})
    298     ``$A\implies$\textbf{true}'' is always true, whatever $A$ is
    299   \end{remark}
    300 \end{frame}
    301 
    302 
    303 \begin{frame}{Notation}
    304   Sometimes we use the following symbols:
    305   \begin{itemize}
    306     \item ``$A\impliedby B$'' is the same as ``$B\implies A$''
    307     \item ``$A\iff B$ is the same as ``$(A\implies B)\land (B\implies A)$''.\\
    308         It is read ``$A$ is equivalent to $B$'' or ``$A$ if and only if $B$''.
    309   \end{itemize}
    310 \end{frame}
    311 
    312 \begin{frame}{Contrapositive}
    313   \begin{itemize}
    314     \item The statement $(\neg B)\implies (\neg A)$ is called
    315           \emph{contrapositive} of $A\implies B$
    316     \pause
    317     \item It is equivalent to ``$A\implies B$''
    318     \pause
    319     \item Two proofs:
    320       \begin{enumerate}
    321         \item Properties of logical operations
    322         \item Truth tables
    323       \end{enumerate}
    324   \end{itemize}
    325 \end{frame}
    326 
    327 \begin{frame}{End of part 1}
    328   \begin{center}
    329     \Huge See you tomorrow!
    330   \end{center}
    331   \vspace{10pt}
    332   \refgithub
    333 \end{frame}
    334 
    335 \begin{frame}{Elementary logic - part 2}
    336   \begin{center}
    337     \Huge Welcome Back!
    338   \end{center}
    339   \vspace{10pt}
    340   \refgithub
    341 \end{frame}
    342 
    343 
    344 \section{Quantifiers}
    345 
    346 \begin{frame}{Quantifiers}
    347   Let $S$ be a set and let $A(x)$ be a ``variable statement'' that depends on
    348   $x\in S$ (for example $S=\mathbb{N}$ and $A(x)=$``x is an even number'').
    349   \pause
    350   \vspace{12pt}
    351   \begin{itemize}
    352     \item \textbf{Universal quantifier} ($\forall$ or ``for all''):
    353           ``$\forall x\in S,\,A(x)$'' means that if we replace ``$x$'' with any
    354           element of $S$, $A(x)$ is always \textbf{true}.
    355   \vspace{9pt}
    356     \item \textbf{Existential quantifier} ($\exists$ or ``there exists''):
    357           ``$\exists x\in S,\, A(x)$'' means that $A(x)$ is \textbf{true} for
    358           at least one value of $x$ is $S$.
    359   \end{itemize}
    360   \vspace{12pt}
    361   \pause
    362   \textbf{You always need a set $S$}
    363 \end{frame}
    364 
    365 \begin{frame}{Quantifiers - examples}
    366   \begin{example}
    367   $S=$``the set of all cars'', $A(x)$=``$x$ is red''
    368 
    369   $\forall x\in S,\, A(x)$ is \textbf{false}.
    370 
    371   $\exists x\in S,\, A(x)$ is \textbf{true}.
    372   \end{example}
    373   \begin{example}
    374     $S=\mathbb{N}$, $A(x)=x>5$
    375 
    376   $\forall x\in S,\, A(x)$ is \textbf{false}.
    377 
    378   $\exists x\in S,\, A(x)$ is \textbf{true}.
    379   \end{example}
    380 \end{frame}
    381 
    382 \begin{frame}{Negation of quantifiers}
    383   \begin{center}
    384     \textbf{Today's most important fact:}
    385   \end{center}
    386   \begin{align*}
    387     \neg(\forall x\in S,\, A(x))&=\only<1>{\quad?}
    388     \onslide<2->{\exists x\in S,\,\neg A(x)}\\
    389     \neg(\exists x\in S,\, A(x))&=\only<1-2>{\quad?}
    390     \onslide<3->{\forall x\in S,\,\neg A(x)}\\
    391   \end{align*}
    392   \onslide<2->{
    393   \begin{example}
    394     \begin{center}
    395   $\neg$``every number is even'' = ``there is at least one odd number''
    396     \end{center}
    397   \end{example}
    398   }
    399   \onslide<3->{
    400   \begin{example}
    401     \begin{center}
    402     $\neg$``$\exists x\in \mathbb N,\, x+3=9$'' =
    403     ``$\forall x\in \mathbb N,\, x+3\neq 9$''
    404     \end{center}
    405   \end{example}
    406   }
    407 \end{frame}
    408 
    409 \section{Proofs}
    410 
    411 \begin{frame}{Proofs}
    412   \begin{itemize}
    413     \item A proof is a sequence of statements, each one logically deriving from
    414           the previous.
    415           \pause
    416     \item Proofs are used to derive new statements from statements that are
    417           known to be true.
    418           \pause
    419     \item If $A$ is known to be true and the implication $A\implies B$ is
    420           logically clear, then also $B$ must be true.
    421           \pause
    422     \item Every mathematical theorem must be justified with a proof.
    423   \end{itemize}
    424 \end{frame}
    425 
    426 %\subsection{Direct proofs}
    427 \begin{frame}{Example: direct proof}
    428   \begin{theorem}
    429     The sum of two even numbers is even.
    430   \end{theorem}
    431   \pause
    432   \begin{proof}
    433     \begin{enumerate}
    434   \item Recall the definition: a natural number $x$ is called \emph{even}
    435         if there is some natural number $n$ such that $x=2n$.
    436     \pause
    437   \item If $x$ and $y$ are even numbers, then there are natural numbers $n$
    438     and $m$ such that $x=2n$ and $y=2m$.
    439     \pause
    440   \item Then $x+y=2n+2m=2(n+m)$.
    441     \pause
    442   \item Then $x+y$ is even.
    443     \end{enumerate} 
    444   \end{proof}
    445 \end{frame}
    446 
    447 
    448 %\subsection{Proofs by contradiction}
    449 
    450 \begin{frame}{Proofs by contradiction}
    451   Idea: I want to show $A=\textbf{true}$. I show that the implication
    452   ``$(\neg A)\implies\textbf{false}$'' is \textbf{true}.
    453   Then $\neg A=\textbf{false}$, so $A=\textbf{true}$.
    454   \pause
    455 \begin{definition}
    456   A natural number is called \emph{prime} if it is different from $1$ and it
    457   is only divisible by $1$ and itself.
    458 \end{definition}
    459   \begin{theorem}
    460     There are infinitely many prime numbers.
    461   \end{theorem}
    462 
    463 \end{frame}
    464 
    465 \begin{frame}{Proofs by contradiction}
    466   \begin{theorem}
    467     There are infinitely many prime numbers.
    468   \end{theorem}
    469   \pause
    470   \begin{proof}
    471     \begin{enumerate}
    472     \item Assume that there are only finitely many prime numbers.
    473     \pause
    474     \item $\exists n\in \mathbb N$, there are $n$ prime numbers. Call them
    475           $p_1,p_2,\dots,p_n$.
    476     \pause
    477     \item Let $u=p_1\times p_2\times \dots \times p_n +1$.
    478     \pause
    479     \item $u$ is not divisible by any of the prime numbers $p_1,\dots,p_n$.
    480     \pause
    481     \item Therefore $u$ is only divisible by $1$ and itself. So $u$ is prime.
    482     \pause
    483     \item So $p_1,\dots,p_n$ are not the only prime numbers.
    484     \end{enumerate}
    485   \end{proof}
    486 
    487 \end{frame}
    488 
    489 
    490 %\subsection{Proofs by induction}
    491 
    492 \begin{frame}{Proofs by induction}
    493   If I want to prove $\forall n\in \mathbb N,\, A(n)$:
    494   \begin{enumerate}
    495     \item Prove $A(0)$ (\emph{base step})
    496     \item Prove $\forall n\in \mathbb N,\, (A(n)\implies A(n+1))$
    497     (\emph{inductive step})
    498   \end{enumerate}
    499   \pause
    500   \begin{theorem}[Sum of natural numbers]
    501     $\forall n\in \mathbb N,\quad 0+1+\cdots + n=\frac{n(n+1)}{2}$
    502   \end{theorem}
    503 
    504 \end{frame}
    505 
    506 
    507 \begin{frame}
    508   \begin{proof}
    509   \begin{enumerate}
    510   \item Base case: $0=0$.
    511     \pause
    512   \item Let $n$ be any natural number.
    513     \pause
    514       
    515       If $A(n)=\textbf{false}$, then $A(n)\implies A(n+1)$ is \textbf{true}.
    516       \pause
    517 
    518       If $A(n)=\textbf{true}$, we have to show that $A(n+1)=\textbf{true}$.
    519       \pause
    520       
    521       \begin{align*}
    522         \begin{array}{rlr}
    523           0+\cdots +(n+1)& = (0+\cdots+ n)+(n+1)=\\
    524           & = \frac{n(n+1)}{2}+(n+1)= & \text{since }A(n)=\textbf{true}\\
    525           & = \frac{n^2+n+2n+2}{2}\\
    526           & = \frac{(n+1)(n+2)}{2}
    527         \end{array}
    528       \end{align*}
    529       so $A(n+1)=\textbf{true}$
    530 
    531   \end{enumerate}
    532   \end{proof}
    533 \end{frame}
    534 
    535 \begin{frame}{The end}
    536   What you have learned in this course:
    537   \begin{itemize}
    538     \item Basic logic operations and logic implication
    539     \item Quantifiers and \textbf{their negation}
    540     \item Some basic mathematical proofs
    541   \end{itemize}
    542   \vspace{10pt}
    543   \refgithub
    544 \end{frame}
    545 
    546 
    547 \end{document}