minesweeper

A minewseeper implementation to play around with Hare and Raylib
git clone https://git.tronto.net/minesweeper
Download | Log | Files | Refs | README | LICENSE

raymath.h (82281B)


      1 /**********************************************************************************************
      2 *
      3 *   raymath v2.0 - Math functions to work with Vector2, Vector3, Matrix and Quaternions
      4 *
      5 *   CONVENTIONS:
      6 *     - Matrix structure is defined as row-major (memory layout) but parameters naming AND all
      7 *       math operations performed by the library consider the structure as it was column-major
      8 *       It is like transposed versions of the matrices are used for all the maths
      9 *       It benefits some functions making them cache-friendly and also avoids matrix
     10 *       transpositions sometimes required by OpenGL
     11 *       Example: In memory order, row0 is [m0 m4 m8 m12] but in semantic math row0 is [m0 m1 m2 m3]
     12 *     - Functions are always self-contained, no function use another raymath function inside,
     13 *       required code is directly re-implemented inside
     14 *     - Functions input parameters are always received by value (2 unavoidable exceptions)
     15 *     - Functions use always a "result" variable for return (except C++ operators)
     16 *     - Functions are always defined inline
     17 *     - Angles are always in radians (DEG2RAD/RAD2DEG macros provided for convenience)
     18 *     - No compound literals used to make sure libray is compatible with C++
     19 *
     20 *   CONFIGURATION:
     21 *       #define RAYMATH_IMPLEMENTATION
     22 *           Generates the implementation of the library into the included file.
     23 *           If not defined, the library is in header only mode and can be included in other headers
     24 *           or source files without problems. But only ONE file should hold the implementation.
     25 *
     26 *       #define RAYMATH_STATIC_INLINE
     27 *           Define static inline functions code, so #include header suffices for use.
     28 *           This may use up lots of memory.
     29 *
     30 *       #define RAYMATH_DISABLE_CPP_OPERATORS
     31 *           Disables C++ operator overloads for raymath types.
     32 *
     33 *   LICENSE: zlib/libpng
     34 *
     35 *   Copyright (c) 2015-2024 Ramon Santamaria (@raysan5)
     36 *
     37 *   This software is provided "as-is", without any express or implied warranty. In no event
     38 *   will the authors be held liable for any damages arising from the use of this software.
     39 *
     40 *   Permission is granted to anyone to use this software for any purpose, including commercial
     41 *   applications, and to alter it and redistribute it freely, subject to the following restrictions:
     42 *
     43 *     1. The origin of this software must not be misrepresented; you must not claim that you
     44 *     wrote the original software. If you use this software in a product, an acknowledgment
     45 *     in the product documentation would be appreciated but is not required.
     46 *
     47 *     2. Altered source versions must be plainly marked as such, and must not be misrepresented
     48 *     as being the original software.
     49 *
     50 *     3. This notice may not be removed or altered from any source distribution.
     51 *
     52 **********************************************************************************************/
     53 
     54 #ifndef RAYMATH_H
     55 #define RAYMATH_H
     56 
     57 #if defined(RAYMATH_IMPLEMENTATION) && defined(RAYMATH_STATIC_INLINE)
     58     #error "Specifying both RAYMATH_IMPLEMENTATION and RAYMATH_STATIC_INLINE is contradictory"
     59 #endif
     60 
     61 // Function specifiers definition
     62 #if defined(RAYMATH_IMPLEMENTATION)
     63     #if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED)
     64         #define RMAPI __declspec(dllexport) extern inline // We are building raylib as a Win32 shared library (.dll)
     65     #elif defined(BUILD_LIBTYPE_SHARED)
     66         #define RMAPI __attribute__((visibility("default"))) // We are building raylib as a Unix shared library (.so/.dylib)
     67     #elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED)
     68         #define RMAPI __declspec(dllimport)         // We are using raylib as a Win32 shared library (.dll)
     69     #else
     70         #define RMAPI extern inline // Provide external definition
     71     #endif
     72 #elif defined(RAYMATH_STATIC_INLINE)
     73     #define RMAPI static inline // Functions may be inlined, no external out-of-line definition
     74 #else
     75     #if defined(__TINYC__)
     76         #define RMAPI static inline // plain inline not supported by tinycc (See issue #435)
     77     #else
     78         #define RMAPI inline        // Functions may be inlined or external definition used
     79     #endif
     80 #endif
     81 
     82 
     83 //----------------------------------------------------------------------------------
     84 // Defines and Macros
     85 //----------------------------------------------------------------------------------
     86 #ifndef PI
     87     #define PI 3.14159265358979323846f
     88 #endif
     89 
     90 #ifndef EPSILON
     91     #define EPSILON 0.000001f
     92 #endif
     93 
     94 #ifndef DEG2RAD
     95     #define DEG2RAD (PI/180.0f)
     96 #endif
     97 
     98 #ifndef RAD2DEG
     99     #define RAD2DEG (180.0f/PI)
    100 #endif
    101 
    102 // Get float vector for Matrix
    103 #ifndef MatrixToFloat
    104     #define MatrixToFloat(mat) (MatrixToFloatV(mat).v)
    105 #endif
    106 
    107 // Get float vector for Vector3
    108 #ifndef Vector3ToFloat
    109     #define Vector3ToFloat(vec) (Vector3ToFloatV(vec).v)
    110 #endif
    111 
    112 //----------------------------------------------------------------------------------
    113 // Types and Structures Definition
    114 //----------------------------------------------------------------------------------
    115 #if !defined(RL_VECTOR2_TYPE)
    116 // Vector2 type
    117 typedef struct Vector2 {
    118     float x;
    119     float y;
    120 } Vector2;
    121 #define RL_VECTOR2_TYPE
    122 #endif
    123 
    124 #if !defined(RL_VECTOR3_TYPE)
    125 // Vector3 type
    126 typedef struct Vector3 {
    127     float x;
    128     float y;
    129     float z;
    130 } Vector3;
    131 #define RL_VECTOR3_TYPE
    132 #endif
    133 
    134 #if !defined(RL_VECTOR4_TYPE)
    135 // Vector4 type
    136 typedef struct Vector4 {
    137     float x;
    138     float y;
    139     float z;
    140     float w;
    141 } Vector4;
    142 #define RL_VECTOR4_TYPE
    143 #endif
    144 
    145 #if !defined(RL_QUATERNION_TYPE)
    146 // Quaternion type
    147 typedef Vector4 Quaternion;
    148 #define RL_QUATERNION_TYPE
    149 #endif
    150 
    151 #if !defined(RL_MATRIX_TYPE)
    152 // Matrix type (OpenGL style 4x4 - right handed, column major)
    153 typedef struct Matrix {
    154     float m0, m4, m8, m12;      // Matrix first row (4 components)
    155     float m1, m5, m9, m13;      // Matrix second row (4 components)
    156     float m2, m6, m10, m14;     // Matrix third row (4 components)
    157     float m3, m7, m11, m15;     // Matrix fourth row (4 components)
    158 } Matrix;
    159 #define RL_MATRIX_TYPE
    160 #endif
    161 
    162 // NOTE: Helper types to be used instead of array return types for *ToFloat functions
    163 typedef struct float3 {
    164     float v[3];
    165 } float3;
    166 
    167 typedef struct float16 {
    168     float v[16];
    169 } float16;
    170 
    171 #include <math.h>       // Required for: sinf(), cosf(), tan(), atan2f(), sqrtf(), floor(), fminf(), fmaxf(), fabsf()
    172 
    173 //----------------------------------------------------------------------------------
    174 // Module Functions Definition - Utils math
    175 //----------------------------------------------------------------------------------
    176 
    177 // Clamp float value
    178 RMAPI float Clamp(float value, float min, float max)
    179 {
    180     float result = (value < min)? min : value;
    181 
    182     if (result > max) result = max;
    183 
    184     return result;
    185 }
    186 
    187 // Calculate linear interpolation between two floats
    188 RMAPI float Lerp(float start, float end, float amount)
    189 {
    190     float result = start + amount*(end - start);
    191 
    192     return result;
    193 }
    194 
    195 // Normalize input value within input range
    196 RMAPI float Normalize(float value, float start, float end)
    197 {
    198     float result = (value - start)/(end - start);
    199 
    200     return result;
    201 }
    202 
    203 // Remap input value within input range to output range
    204 RMAPI float Remap(float value, float inputStart, float inputEnd, float outputStart, float outputEnd)
    205 {
    206     float result = (value - inputStart)/(inputEnd - inputStart)*(outputEnd - outputStart) + outputStart;
    207 
    208     return result;
    209 }
    210 
    211 // Wrap input value from min to max
    212 RMAPI float Wrap(float value, float min, float max)
    213 {
    214     float result = value - (max - min)*floorf((value - min)/(max - min));
    215 
    216     return result;
    217 }
    218 
    219 // Check whether two given floats are almost equal
    220 RMAPI int FloatEquals(float x, float y)
    221 {
    222 #if !defined(EPSILON)
    223     #define EPSILON 0.000001f
    224 #endif
    225 
    226     int result = (fabsf(x - y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(x), fabsf(y))));
    227 
    228     return result;
    229 }
    230 
    231 //----------------------------------------------------------------------------------
    232 // Module Functions Definition - Vector2 math
    233 //----------------------------------------------------------------------------------
    234 
    235 // Vector with components value 0.0f
    236 RMAPI Vector2 Vector2Zero(void)
    237 {
    238     Vector2 result = { 0.0f, 0.0f };
    239 
    240     return result;
    241 }
    242 
    243 // Vector with components value 1.0f
    244 RMAPI Vector2 Vector2One(void)
    245 {
    246     Vector2 result = { 1.0f, 1.0f };
    247 
    248     return result;
    249 }
    250 
    251 // Add two vectors (v1 + v2)
    252 RMAPI Vector2 Vector2Add(Vector2 v1, Vector2 v2)
    253 {
    254     Vector2 result = { v1.x + v2.x, v1.y + v2.y };
    255 
    256     return result;
    257 }
    258 
    259 // Add vector and float value
    260 RMAPI Vector2 Vector2AddValue(Vector2 v, float add)
    261 {
    262     Vector2 result = { v.x + add, v.y + add };
    263 
    264     return result;
    265 }
    266 
    267 // Subtract two vectors (v1 - v2)
    268 RMAPI Vector2 Vector2Subtract(Vector2 v1, Vector2 v2)
    269 {
    270     Vector2 result = { v1.x - v2.x, v1.y - v2.y };
    271 
    272     return result;
    273 }
    274 
    275 // Subtract vector by float value
    276 RMAPI Vector2 Vector2SubtractValue(Vector2 v, float sub)
    277 {
    278     Vector2 result = { v.x - sub, v.y - sub };
    279 
    280     return result;
    281 }
    282 
    283 // Calculate vector length
    284 RMAPI float Vector2Length(Vector2 v)
    285 {
    286     float result = sqrtf((v.x*v.x) + (v.y*v.y));
    287 
    288     return result;
    289 }
    290 
    291 // Calculate vector square length
    292 RMAPI float Vector2LengthSqr(Vector2 v)
    293 {
    294     float result = (v.x*v.x) + (v.y*v.y);
    295 
    296     return result;
    297 }
    298 
    299 // Calculate two vectors dot product
    300 RMAPI float Vector2DotProduct(Vector2 v1, Vector2 v2)
    301 {
    302     float result = (v1.x*v2.x + v1.y*v2.y);
    303 
    304     return result;
    305 }
    306 
    307 // Calculate distance between two vectors
    308 RMAPI float Vector2Distance(Vector2 v1, Vector2 v2)
    309 {
    310     float result = sqrtf((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y));
    311 
    312     return result;
    313 }
    314 
    315 // Calculate square distance between two vectors
    316 RMAPI float Vector2DistanceSqr(Vector2 v1, Vector2 v2)
    317 {
    318     float result = ((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y));
    319 
    320     return result;
    321 }
    322 
    323 // Calculate angle between two vectors
    324 // NOTE: Angle is calculated from origin point (0, 0)
    325 RMAPI float Vector2Angle(Vector2 v1, Vector2 v2)
    326 {
    327     float result = 0.0f;
    328 
    329     float dot = v1.x*v2.x + v1.y*v2.y;
    330     float det = v1.x*v2.y - v1.y*v2.x;
    331 
    332     result = atan2f(det, dot);
    333 
    334     return result;
    335 }
    336 
    337 // Calculate angle defined by a two vectors line
    338 // NOTE: Parameters need to be normalized
    339 // Current implementation should be aligned with glm::angle
    340 RMAPI float Vector2LineAngle(Vector2 start, Vector2 end)
    341 {
    342     float result = 0.0f;
    343 
    344     // TODO(10/9/2023): Currently angles move clockwise, determine if this is wanted behavior
    345     result = -atan2f(end.y - start.y, end.x - start.x);
    346 
    347     return result;
    348 }
    349 
    350 // Scale vector (multiply by value)
    351 RMAPI Vector2 Vector2Scale(Vector2 v, float scale)
    352 {
    353     Vector2 result = { v.x*scale, v.y*scale };
    354 
    355     return result;
    356 }
    357 
    358 // Multiply vector by vector
    359 RMAPI Vector2 Vector2Multiply(Vector2 v1, Vector2 v2)
    360 {
    361     Vector2 result = { v1.x*v2.x, v1.y*v2.y };
    362 
    363     return result;
    364 }
    365 
    366 // Negate vector
    367 RMAPI Vector2 Vector2Negate(Vector2 v)
    368 {
    369     Vector2 result = { -v.x, -v.y };
    370 
    371     return result;
    372 }
    373 
    374 // Divide vector by vector
    375 RMAPI Vector2 Vector2Divide(Vector2 v1, Vector2 v2)
    376 {
    377     Vector2 result = { v1.x/v2.x, v1.y/v2.y };
    378 
    379     return result;
    380 }
    381 
    382 // Normalize provided vector
    383 RMAPI Vector2 Vector2Normalize(Vector2 v)
    384 {
    385     Vector2 result = { 0 };
    386     float length = sqrtf((v.x*v.x) + (v.y*v.y));
    387 
    388     if (length > 0)
    389     {
    390         float ilength = 1.0f/length;
    391         result.x = v.x*ilength;
    392         result.y = v.y*ilength;
    393     }
    394 
    395     return result;
    396 }
    397 
    398 // Transforms a Vector2 by a given Matrix
    399 RMAPI Vector2 Vector2Transform(Vector2 v, Matrix mat)
    400 {
    401     Vector2 result = { 0 };
    402 
    403     float x = v.x;
    404     float y = v.y;
    405     float z = 0;
    406 
    407     result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
    408     result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
    409 
    410     return result;
    411 }
    412 
    413 // Calculate linear interpolation between two vectors
    414 RMAPI Vector2 Vector2Lerp(Vector2 v1, Vector2 v2, float amount)
    415 {
    416     Vector2 result = { 0 };
    417 
    418     result.x = v1.x + amount*(v2.x - v1.x);
    419     result.y = v1.y + amount*(v2.y - v1.y);
    420 
    421     return result;
    422 }
    423 
    424 // Calculate reflected vector to normal
    425 RMAPI Vector2 Vector2Reflect(Vector2 v, Vector2 normal)
    426 {
    427     Vector2 result = { 0 };
    428 
    429     float dotProduct = (v.x*normal.x + v.y*normal.y); // Dot product
    430 
    431     result.x = v.x - (2.0f*normal.x)*dotProduct;
    432     result.y = v.y - (2.0f*normal.y)*dotProduct;
    433 
    434     return result;
    435 }
    436 
    437 // Get min value for each pair of components
    438 RMAPI Vector2 Vector2Min(Vector2 v1, Vector2 v2)
    439 {
    440     Vector2 result = { 0 };
    441 
    442     result.x = fminf(v1.x, v2.x);
    443     result.y = fminf(v1.y, v2.y);
    444 
    445     return result;
    446 }
    447 
    448 // Get max value for each pair of components
    449 RMAPI Vector2 Vector2Max(Vector2 v1, Vector2 v2)
    450 {
    451     Vector2 result = { 0 };
    452 
    453     result.x = fmaxf(v1.x, v2.x);
    454     result.y = fmaxf(v1.y, v2.y);
    455 
    456     return result;
    457 }
    458 
    459 // Rotate vector by angle
    460 RMAPI Vector2 Vector2Rotate(Vector2 v, float angle)
    461 {
    462     Vector2 result = { 0 };
    463 
    464     float cosres = cosf(angle);
    465     float sinres = sinf(angle);
    466 
    467     result.x = v.x*cosres - v.y*sinres;
    468     result.y = v.x*sinres + v.y*cosres;
    469 
    470     return result;
    471 }
    472 
    473 // Move Vector towards target
    474 RMAPI Vector2 Vector2MoveTowards(Vector2 v, Vector2 target, float maxDistance)
    475 {
    476     Vector2 result = { 0 };
    477 
    478     float dx = target.x - v.x;
    479     float dy = target.y - v.y;
    480     float value = (dx*dx) + (dy*dy);
    481 
    482     if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target;
    483 
    484     float dist = sqrtf(value);
    485 
    486     result.x = v.x + dx/dist*maxDistance;
    487     result.y = v.y + dy/dist*maxDistance;
    488 
    489     return result;
    490 }
    491 
    492 // Invert the given vector
    493 RMAPI Vector2 Vector2Invert(Vector2 v)
    494 {
    495     Vector2 result = { 1.0f/v.x, 1.0f/v.y };
    496 
    497     return result;
    498 }
    499 
    500 // Clamp the components of the vector between
    501 // min and max values specified by the given vectors
    502 RMAPI Vector2 Vector2Clamp(Vector2 v, Vector2 min, Vector2 max)
    503 {
    504     Vector2 result = { 0 };
    505 
    506     result.x = fminf(max.x, fmaxf(min.x, v.x));
    507     result.y = fminf(max.y, fmaxf(min.y, v.y));
    508 
    509     return result;
    510 }
    511 
    512 // Clamp the magnitude of the vector between two min and max values
    513 RMAPI Vector2 Vector2ClampValue(Vector2 v, float min, float max)
    514 {
    515     Vector2 result = v;
    516 
    517     float length = (v.x*v.x) + (v.y*v.y);
    518     if (length > 0.0f)
    519     {
    520         length = sqrtf(length);
    521 
    522         float scale = 1;    // By default, 1 as the neutral element.
    523         if (length < min)
    524         {
    525             scale = min/length;
    526         }
    527         else if (length > max)
    528         {
    529             scale = max/length;
    530         }
    531 
    532         result.x = v.x*scale;
    533         result.y = v.y*scale;
    534     }
    535 
    536     return result;
    537 }
    538 
    539 // Check whether two given vectors are almost equal
    540 RMAPI int Vector2Equals(Vector2 p, Vector2 q)
    541 {
    542 #if !defined(EPSILON)
    543     #define EPSILON 0.000001f
    544 #endif
    545 
    546     int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
    547                   ((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y)))));
    548 
    549     return result;
    550 }
    551 
    552 // Compute the direction of a refracted ray
    553 // v: normalized direction of the incoming ray
    554 // n: normalized normal vector of the interface of two optical media
    555 // r: ratio of the refractive index of the medium from where the ray comes
    556 //    to the refractive index of the medium on the other side of the surface
    557 RMAPI Vector2 Vector2Refract(Vector2 v, Vector2 n, float r)
    558 {
    559     Vector2 result = { 0 };
    560 
    561     float dot = v.x*n.x + v.y*n.y;
    562     float d = 1.0f - r*r*(1.0f - dot*dot);
    563 
    564     if (d >= 0.0f)
    565     {
    566         d = sqrtf(d);
    567         v.x = r*v.x - (r*dot + d)*n.x;
    568         v.y = r*v.y - (r*dot + d)*n.y;
    569 
    570         result = v;
    571     }
    572 
    573     return result;
    574 }
    575 
    576 
    577 //----------------------------------------------------------------------------------
    578 // Module Functions Definition - Vector3 math
    579 //----------------------------------------------------------------------------------
    580 
    581 // Vector with components value 0.0f
    582 RMAPI Vector3 Vector3Zero(void)
    583 {
    584     Vector3 result = { 0.0f, 0.0f, 0.0f };
    585 
    586     return result;
    587 }
    588 
    589 // Vector with components value 1.0f
    590 RMAPI Vector3 Vector3One(void)
    591 {
    592     Vector3 result = { 1.0f, 1.0f, 1.0f };
    593 
    594     return result;
    595 }
    596 
    597 // Add two vectors
    598 RMAPI Vector3 Vector3Add(Vector3 v1, Vector3 v2)
    599 {
    600     Vector3 result = { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z };
    601 
    602     return result;
    603 }
    604 
    605 // Add vector and float value
    606 RMAPI Vector3 Vector3AddValue(Vector3 v, float add)
    607 {
    608     Vector3 result = { v.x + add, v.y + add, v.z + add };
    609 
    610     return result;
    611 }
    612 
    613 // Subtract two vectors
    614 RMAPI Vector3 Vector3Subtract(Vector3 v1, Vector3 v2)
    615 {
    616     Vector3 result = { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z };
    617 
    618     return result;
    619 }
    620 
    621 // Subtract vector by float value
    622 RMAPI Vector3 Vector3SubtractValue(Vector3 v, float sub)
    623 {
    624     Vector3 result = { v.x - sub, v.y - sub, v.z - sub };
    625 
    626     return result;
    627 }
    628 
    629 // Multiply vector by scalar
    630 RMAPI Vector3 Vector3Scale(Vector3 v, float scalar)
    631 {
    632     Vector3 result = { v.x*scalar, v.y*scalar, v.z*scalar };
    633 
    634     return result;
    635 }
    636 
    637 // Multiply vector by vector
    638 RMAPI Vector3 Vector3Multiply(Vector3 v1, Vector3 v2)
    639 {
    640     Vector3 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z };
    641 
    642     return result;
    643 }
    644 
    645 // Calculate two vectors cross product
    646 RMAPI Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2)
    647 {
    648     Vector3 result = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x };
    649 
    650     return result;
    651 }
    652 
    653 // Calculate one vector perpendicular vector
    654 RMAPI Vector3 Vector3Perpendicular(Vector3 v)
    655 {
    656     Vector3 result = { 0 };
    657 
    658     float min = fabsf(v.x);
    659     Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f};
    660 
    661     if (fabsf(v.y) < min)
    662     {
    663         min = fabsf(v.y);
    664         Vector3 tmp = {0.0f, 1.0f, 0.0f};
    665         cardinalAxis = tmp;
    666     }
    667 
    668     if (fabsf(v.z) < min)
    669     {
    670         Vector3 tmp = {0.0f, 0.0f, 1.0f};
    671         cardinalAxis = tmp;
    672     }
    673 
    674     // Cross product between vectors
    675     result.x = v.y*cardinalAxis.z - v.z*cardinalAxis.y;
    676     result.y = v.z*cardinalAxis.x - v.x*cardinalAxis.z;
    677     result.z = v.x*cardinalAxis.y - v.y*cardinalAxis.x;
    678 
    679     return result;
    680 }
    681 
    682 // Calculate vector length
    683 RMAPI float Vector3Length(const Vector3 v)
    684 {
    685     float result = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
    686 
    687     return result;
    688 }
    689 
    690 // Calculate vector square length
    691 RMAPI float Vector3LengthSqr(const Vector3 v)
    692 {
    693     float result = v.x*v.x + v.y*v.y + v.z*v.z;
    694 
    695     return result;
    696 }
    697 
    698 // Calculate two vectors dot product
    699 RMAPI float Vector3DotProduct(Vector3 v1, Vector3 v2)
    700 {
    701     float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
    702 
    703     return result;
    704 }
    705 
    706 // Calculate distance between two vectors
    707 RMAPI float Vector3Distance(Vector3 v1, Vector3 v2)
    708 {
    709     float result = 0.0f;
    710 
    711     float dx = v2.x - v1.x;
    712     float dy = v2.y - v1.y;
    713     float dz = v2.z - v1.z;
    714     result = sqrtf(dx*dx + dy*dy + dz*dz);
    715 
    716     return result;
    717 }
    718 
    719 // Calculate square distance between two vectors
    720 RMAPI float Vector3DistanceSqr(Vector3 v1, Vector3 v2)
    721 {
    722     float result = 0.0f;
    723 
    724     float dx = v2.x - v1.x;
    725     float dy = v2.y - v1.y;
    726     float dz = v2.z - v1.z;
    727     result = dx*dx + dy*dy + dz*dz;
    728 
    729     return result;
    730 }
    731 
    732 // Calculate angle between two vectors
    733 RMAPI float Vector3Angle(Vector3 v1, Vector3 v2)
    734 {
    735     float result = 0.0f;
    736 
    737     Vector3 cross = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x };
    738     float len = sqrtf(cross.x*cross.x + cross.y*cross.y + cross.z*cross.z);
    739     float dot = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
    740     result = atan2f(len, dot);
    741 
    742     return result;
    743 }
    744 
    745 // Negate provided vector (invert direction)
    746 RMAPI Vector3 Vector3Negate(Vector3 v)
    747 {
    748     Vector3 result = { -v.x, -v.y, -v.z };
    749 
    750     return result;
    751 }
    752 
    753 // Divide vector by vector
    754 RMAPI Vector3 Vector3Divide(Vector3 v1, Vector3 v2)
    755 {
    756     Vector3 result = { v1.x/v2.x, v1.y/v2.y, v1.z/v2.z };
    757 
    758     return result;
    759 }
    760 
    761 // Normalize provided vector
    762 RMAPI Vector3 Vector3Normalize(Vector3 v)
    763 {
    764     Vector3 result = v;
    765 
    766     float length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
    767     if (length != 0.0f)
    768     {
    769         float ilength = 1.0f/length;
    770 
    771         result.x *= ilength;
    772         result.y *= ilength;
    773         result.z *= ilength;
    774     }
    775 
    776     return result;
    777 }
    778 
    779 //Calculate the projection of the vector v1 on to v2
    780 RMAPI Vector3 Vector3Project(Vector3 v1, Vector3 v2)
    781 {
    782     Vector3 result = { 0 };
    783 
    784     float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
    785     float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z);
    786 
    787     float mag = v1dv2/v2dv2;
    788 
    789     result.x = v2.x*mag;
    790     result.y = v2.y*mag;
    791     result.z = v2.z*mag;
    792 
    793     return result;
    794 }
    795 
    796 //Calculate the rejection of the vector v1 on to v2
    797 RMAPI Vector3 Vector3Reject(Vector3 v1, Vector3 v2)
    798 {
    799     Vector3 result = { 0 };
    800 
    801     float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
    802     float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z);
    803 
    804     float mag = v1dv2/v2dv2;
    805 
    806     result.x = v1.x - (v2.x*mag);
    807     result.y = v1.y - (v2.y*mag);
    808     result.z = v1.z - (v2.z*mag);
    809 
    810     return result;
    811 }
    812 
    813 // Orthonormalize provided vectors
    814 // Makes vectors normalized and orthogonal to each other
    815 // Gram-Schmidt function implementation
    816 RMAPI void Vector3OrthoNormalize(Vector3 *v1, Vector3 *v2)
    817 {
    818     float length = 0.0f;
    819     float ilength = 0.0f;
    820 
    821     // Vector3Normalize(*v1);
    822     Vector3 v = *v1;
    823     length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
    824     if (length == 0.0f) length = 1.0f;
    825     ilength = 1.0f/length;
    826     v1->x *= ilength;
    827     v1->y *= ilength;
    828     v1->z *= ilength;
    829 
    830     // Vector3CrossProduct(*v1, *v2)
    831     Vector3 vn1 = { v1->y*v2->z - v1->z*v2->y, v1->z*v2->x - v1->x*v2->z, v1->x*v2->y - v1->y*v2->x };
    832 
    833     // Vector3Normalize(vn1);
    834     v = vn1;
    835     length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
    836     if (length == 0.0f) length = 1.0f;
    837     ilength = 1.0f/length;
    838     vn1.x *= ilength;
    839     vn1.y *= ilength;
    840     vn1.z *= ilength;
    841 
    842     // Vector3CrossProduct(vn1, *v1)
    843     Vector3 vn2 = { vn1.y*v1->z - vn1.z*v1->y, vn1.z*v1->x - vn1.x*v1->z, vn1.x*v1->y - vn1.y*v1->x };
    844 
    845     *v2 = vn2;
    846 }
    847 
    848 // Transforms a Vector3 by a given Matrix
    849 RMAPI Vector3 Vector3Transform(Vector3 v, Matrix mat)
    850 {
    851     Vector3 result = { 0 };
    852 
    853     float x = v.x;
    854     float y = v.y;
    855     float z = v.z;
    856 
    857     result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
    858     result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
    859     result.z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14;
    860 
    861     return result;
    862 }
    863 
    864 // Transform a vector by quaternion rotation
    865 RMAPI Vector3 Vector3RotateByQuaternion(Vector3 v, Quaternion q)
    866 {
    867     Vector3 result = { 0 };
    868 
    869     result.x = v.x*(q.x*q.x + q.w*q.w - q.y*q.y - q.z*q.z) + v.y*(2*q.x*q.y - 2*q.w*q.z) + v.z*(2*q.x*q.z + 2*q.w*q.y);
    870     result.y = v.x*(2*q.w*q.z + 2*q.x*q.y) + v.y*(q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z) + v.z*(-2*q.w*q.x + 2*q.y*q.z);
    871     result.z = v.x*(-2*q.w*q.y + 2*q.x*q.z) + v.y*(2*q.w*q.x + 2*q.y*q.z)+ v.z*(q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z);
    872 
    873     return result;
    874 }
    875 
    876 // Rotates a vector around an axis
    877 RMAPI Vector3 Vector3RotateByAxisAngle(Vector3 v, Vector3 axis, float angle)
    878 {
    879     // Using Euler-Rodrigues Formula
    880     // Ref.: https://en.wikipedia.org/w/index.php?title=Euler%E2%80%93Rodrigues_formula
    881 
    882     Vector3 result = v;
    883 
    884     // Vector3Normalize(axis);
    885     float length = sqrtf(axis.x*axis.x + axis.y*axis.y + axis.z*axis.z);
    886     if (length == 0.0f) length = 1.0f;
    887     float ilength = 1.0f/length;
    888     axis.x *= ilength;
    889     axis.y *= ilength;
    890     axis.z *= ilength;
    891 
    892     angle /= 2.0f;
    893     float a = sinf(angle);
    894     float b = axis.x*a;
    895     float c = axis.y*a;
    896     float d = axis.z*a;
    897     a = cosf(angle);
    898     Vector3 w = { b, c, d };
    899 
    900     // Vector3CrossProduct(w, v)
    901     Vector3 wv = { w.y*v.z - w.z*v.y, w.z*v.x - w.x*v.z, w.x*v.y - w.y*v.x };
    902 
    903     // Vector3CrossProduct(w, wv)
    904     Vector3 wwv = { w.y*wv.z - w.z*wv.y, w.z*wv.x - w.x*wv.z, w.x*wv.y - w.y*wv.x };
    905 
    906     // Vector3Scale(wv, 2*a)
    907     a *= 2;
    908     wv.x *= a;
    909     wv.y *= a;
    910     wv.z *= a;
    911 
    912     // Vector3Scale(wwv, 2)
    913     wwv.x *= 2;
    914     wwv.y *= 2;
    915     wwv.z *= 2;
    916 
    917     result.x += wv.x;
    918     result.y += wv.y;
    919     result.z += wv.z;
    920 
    921     result.x += wwv.x;
    922     result.y += wwv.y;
    923     result.z += wwv.z;
    924 
    925     return result;
    926 }
    927 
    928 // Move Vector towards target
    929 RMAPI Vector3 Vector3MoveTowards(Vector3 v, Vector3 target, float maxDistance)
    930 {
    931     Vector3 result = { 0 };
    932 
    933     float dx = target.x - v.x;
    934     float dy = target.y - v.y;
    935     float dz = target.z - v.z;
    936     float value = (dx*dx) + (dy*dy) + (dz*dz);
    937 
    938     if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target;
    939 
    940     float dist = sqrtf(value);
    941 
    942     result.x = v.x + dx/dist*maxDistance;
    943     result.y = v.y + dy/dist*maxDistance;
    944     result.z = v.z + dz/dist*maxDistance;
    945 
    946     return result;
    947 }
    948 
    949 // Calculate linear interpolation between two vectors
    950 RMAPI Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount)
    951 {
    952     Vector3 result = { 0 };
    953 
    954     result.x = v1.x + amount*(v2.x - v1.x);
    955     result.y = v1.y + amount*(v2.y - v1.y);
    956     result.z = v1.z + amount*(v2.z - v1.z);
    957 
    958     return result;
    959 }
    960 
    961 // Calculate cubic hermite interpolation between two vectors and their tangents
    962 // as described in the GLTF 2.0 specification: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#interpolation-cubic
    963 RMAPI Vector3 Vector3CubicHermite(Vector3 v1, Vector3 tangent1, Vector3 v2, Vector3 tangent2, float amount)
    964 {
    965     Vector3 result = { 0 };
    966 
    967     float amountPow2 = amount*amount;
    968     float amountPow3 = amount*amount*amount;
    969 
    970     result.x = (2*amountPow3 - 3*amountPow2 + 1)*v1.x + (amountPow3 - 2*amountPow2 + amount)*tangent1.x + (-2*amountPow3 + 3*amountPow2)*v2.x + (amountPow3 - amountPow2)*tangent2.x;
    971     result.y = (2*amountPow3 - 3*amountPow2 + 1)*v1.y + (amountPow3 - 2*amountPow2 + amount)*tangent1.y + (-2*amountPow3 + 3*amountPow2)*v2.y + (amountPow3 - amountPow2)*tangent2.y;
    972     result.z = (2*amountPow3 - 3*amountPow2 + 1)*v1.z + (amountPow3 - 2*amountPow2 + amount)*tangent1.z + (-2*amountPow3 + 3*amountPow2)*v2.z + (amountPow3 - amountPow2)*tangent2.z;
    973 
    974     return result;
    975 }
    976 
    977 // Calculate reflected vector to normal
    978 RMAPI Vector3 Vector3Reflect(Vector3 v, Vector3 normal)
    979 {
    980     Vector3 result = { 0 };
    981 
    982     // I is the original vector
    983     // N is the normal of the incident plane
    984     // R = I - (2*N*(DotProduct[I, N]))
    985 
    986     float dotProduct = (v.x*normal.x + v.y*normal.y + v.z*normal.z);
    987 
    988     result.x = v.x - (2.0f*normal.x)*dotProduct;
    989     result.y = v.y - (2.0f*normal.y)*dotProduct;
    990     result.z = v.z - (2.0f*normal.z)*dotProduct;
    991 
    992     return result;
    993 }
    994 
    995 // Get min value for each pair of components
    996 RMAPI Vector3 Vector3Min(Vector3 v1, Vector3 v2)
    997 {
    998     Vector3 result = { 0 };
    999 
   1000     result.x = fminf(v1.x, v2.x);
   1001     result.y = fminf(v1.y, v2.y);
   1002     result.z = fminf(v1.z, v2.z);
   1003 
   1004     return result;
   1005 }
   1006 
   1007 // Get max value for each pair of components
   1008 RMAPI Vector3 Vector3Max(Vector3 v1, Vector3 v2)
   1009 {
   1010     Vector3 result = { 0 };
   1011 
   1012     result.x = fmaxf(v1.x, v2.x);
   1013     result.y = fmaxf(v1.y, v2.y);
   1014     result.z = fmaxf(v1.z, v2.z);
   1015 
   1016     return result;
   1017 }
   1018 
   1019 // Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c)
   1020 // NOTE: Assumes P is on the plane of the triangle
   1021 RMAPI Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c)
   1022 {
   1023     Vector3 result = { 0 };
   1024 
   1025     Vector3 v0 = { b.x - a.x, b.y - a.y, b.z - a.z };   // Vector3Subtract(b, a)
   1026     Vector3 v1 = { c.x - a.x, c.y - a.y, c.z - a.z };   // Vector3Subtract(c, a)
   1027     Vector3 v2 = { p.x - a.x, p.y - a.y, p.z - a.z };   // Vector3Subtract(p, a)
   1028     float d00 = (v0.x*v0.x + v0.y*v0.y + v0.z*v0.z);    // Vector3DotProduct(v0, v0)
   1029     float d01 = (v0.x*v1.x + v0.y*v1.y + v0.z*v1.z);    // Vector3DotProduct(v0, v1)
   1030     float d11 = (v1.x*v1.x + v1.y*v1.y + v1.z*v1.z);    // Vector3DotProduct(v1, v1)
   1031     float d20 = (v2.x*v0.x + v2.y*v0.y + v2.z*v0.z);    // Vector3DotProduct(v2, v0)
   1032     float d21 = (v2.x*v1.x + v2.y*v1.y + v2.z*v1.z);    // Vector3DotProduct(v2, v1)
   1033 
   1034     float denom = d00*d11 - d01*d01;
   1035 
   1036     result.y = (d11*d20 - d01*d21)/denom;
   1037     result.z = (d00*d21 - d01*d20)/denom;
   1038     result.x = 1.0f - (result.z + result.y);
   1039 
   1040     return result;
   1041 }
   1042 
   1043 // Projects a Vector3 from screen space into object space
   1044 // NOTE: We are avoiding calling other raymath functions despite available
   1045 RMAPI Vector3 Vector3Unproject(Vector3 source, Matrix projection, Matrix view)
   1046 {
   1047     Vector3 result = { 0 };
   1048 
   1049     // Calculate unprojected matrix (multiply view matrix by projection matrix) and invert it
   1050     Matrix matViewProj = {      // MatrixMultiply(view, projection);
   1051         view.m0*projection.m0 + view.m1*projection.m4 + view.m2*projection.m8 + view.m3*projection.m12,
   1052         view.m0*projection.m1 + view.m1*projection.m5 + view.m2*projection.m9 + view.m3*projection.m13,
   1053         view.m0*projection.m2 + view.m1*projection.m6 + view.m2*projection.m10 + view.m3*projection.m14,
   1054         view.m0*projection.m3 + view.m1*projection.m7 + view.m2*projection.m11 + view.m3*projection.m15,
   1055         view.m4*projection.m0 + view.m5*projection.m4 + view.m6*projection.m8 + view.m7*projection.m12,
   1056         view.m4*projection.m1 + view.m5*projection.m5 + view.m6*projection.m9 + view.m7*projection.m13,
   1057         view.m4*projection.m2 + view.m5*projection.m6 + view.m6*projection.m10 + view.m7*projection.m14,
   1058         view.m4*projection.m3 + view.m5*projection.m7 + view.m6*projection.m11 + view.m7*projection.m15,
   1059         view.m8*projection.m0 + view.m9*projection.m4 + view.m10*projection.m8 + view.m11*projection.m12,
   1060         view.m8*projection.m1 + view.m9*projection.m5 + view.m10*projection.m9 + view.m11*projection.m13,
   1061         view.m8*projection.m2 + view.m9*projection.m6 + view.m10*projection.m10 + view.m11*projection.m14,
   1062         view.m8*projection.m3 + view.m9*projection.m7 + view.m10*projection.m11 + view.m11*projection.m15,
   1063         view.m12*projection.m0 + view.m13*projection.m4 + view.m14*projection.m8 + view.m15*projection.m12,
   1064         view.m12*projection.m1 + view.m13*projection.m5 + view.m14*projection.m9 + view.m15*projection.m13,
   1065         view.m12*projection.m2 + view.m13*projection.m6 + view.m14*projection.m10 + view.m15*projection.m14,
   1066         view.m12*projection.m3 + view.m13*projection.m7 + view.m14*projection.m11 + view.m15*projection.m15 };
   1067 
   1068     // Calculate inverted matrix -> MatrixInvert(matViewProj);
   1069     // Cache the matrix values (speed optimization)
   1070     float a00 = matViewProj.m0, a01 = matViewProj.m1, a02 = matViewProj.m2, a03 = matViewProj.m3;
   1071     float a10 = matViewProj.m4, a11 = matViewProj.m5, a12 = matViewProj.m6, a13 = matViewProj.m7;
   1072     float a20 = matViewProj.m8, a21 = matViewProj.m9, a22 = matViewProj.m10, a23 = matViewProj.m11;
   1073     float a30 = matViewProj.m12, a31 = matViewProj.m13, a32 = matViewProj.m14, a33 = matViewProj.m15;
   1074 
   1075     float b00 = a00*a11 - a01*a10;
   1076     float b01 = a00*a12 - a02*a10;
   1077     float b02 = a00*a13 - a03*a10;
   1078     float b03 = a01*a12 - a02*a11;
   1079     float b04 = a01*a13 - a03*a11;
   1080     float b05 = a02*a13 - a03*a12;
   1081     float b06 = a20*a31 - a21*a30;
   1082     float b07 = a20*a32 - a22*a30;
   1083     float b08 = a20*a33 - a23*a30;
   1084     float b09 = a21*a32 - a22*a31;
   1085     float b10 = a21*a33 - a23*a31;
   1086     float b11 = a22*a33 - a23*a32;
   1087 
   1088     // Calculate the invert determinant (inlined to avoid double-caching)
   1089     float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);
   1090 
   1091     Matrix matViewProjInv = {
   1092         (a11*b11 - a12*b10 + a13*b09)*invDet,
   1093         (-a01*b11 + a02*b10 - a03*b09)*invDet,
   1094         (a31*b05 - a32*b04 + a33*b03)*invDet,
   1095         (-a21*b05 + a22*b04 - a23*b03)*invDet,
   1096         (-a10*b11 + a12*b08 - a13*b07)*invDet,
   1097         (a00*b11 - a02*b08 + a03*b07)*invDet,
   1098         (-a30*b05 + a32*b02 - a33*b01)*invDet,
   1099         (a20*b05 - a22*b02 + a23*b01)*invDet,
   1100         (a10*b10 - a11*b08 + a13*b06)*invDet,
   1101         (-a00*b10 + a01*b08 - a03*b06)*invDet,
   1102         (a30*b04 - a31*b02 + a33*b00)*invDet,
   1103         (-a20*b04 + a21*b02 - a23*b00)*invDet,
   1104         (-a10*b09 + a11*b07 - a12*b06)*invDet,
   1105         (a00*b09 - a01*b07 + a02*b06)*invDet,
   1106         (-a30*b03 + a31*b01 - a32*b00)*invDet,
   1107         (a20*b03 - a21*b01 + a22*b00)*invDet };
   1108 
   1109     // Create quaternion from source point
   1110     Quaternion quat = { source.x, source.y, source.z, 1.0f };
   1111 
   1112     // Multiply quat point by unprojecte matrix
   1113     Quaternion qtransformed = {     // QuaternionTransform(quat, matViewProjInv)
   1114         matViewProjInv.m0*quat.x + matViewProjInv.m4*quat.y + matViewProjInv.m8*quat.z + matViewProjInv.m12*quat.w,
   1115         matViewProjInv.m1*quat.x + matViewProjInv.m5*quat.y + matViewProjInv.m9*quat.z + matViewProjInv.m13*quat.w,
   1116         matViewProjInv.m2*quat.x + matViewProjInv.m6*quat.y + matViewProjInv.m10*quat.z + matViewProjInv.m14*quat.w,
   1117         matViewProjInv.m3*quat.x + matViewProjInv.m7*quat.y + matViewProjInv.m11*quat.z + matViewProjInv.m15*quat.w };
   1118 
   1119     // Normalized world points in vectors
   1120     result.x = qtransformed.x/qtransformed.w;
   1121     result.y = qtransformed.y/qtransformed.w;
   1122     result.z = qtransformed.z/qtransformed.w;
   1123 
   1124     return result;
   1125 }
   1126 
   1127 // Get Vector3 as float array
   1128 RMAPI float3 Vector3ToFloatV(Vector3 v)
   1129 {
   1130     float3 buffer = { 0 };
   1131 
   1132     buffer.v[0] = v.x;
   1133     buffer.v[1] = v.y;
   1134     buffer.v[2] = v.z;
   1135 
   1136     return buffer;
   1137 }
   1138 
   1139 // Invert the given vector
   1140 RMAPI Vector3 Vector3Invert(Vector3 v)
   1141 {
   1142     Vector3 result = { 1.0f/v.x, 1.0f/v.y, 1.0f/v.z };
   1143 
   1144     return result;
   1145 }
   1146 
   1147 // Clamp the components of the vector between
   1148 // min and max values specified by the given vectors
   1149 RMAPI Vector3 Vector3Clamp(Vector3 v, Vector3 min, Vector3 max)
   1150 {
   1151     Vector3 result = { 0 };
   1152 
   1153     result.x = fminf(max.x, fmaxf(min.x, v.x));
   1154     result.y = fminf(max.y, fmaxf(min.y, v.y));
   1155     result.z = fminf(max.z, fmaxf(min.z, v.z));
   1156 
   1157     return result;
   1158 }
   1159 
   1160 // Clamp the magnitude of the vector between two values
   1161 RMAPI Vector3 Vector3ClampValue(Vector3 v, float min, float max)
   1162 {
   1163     Vector3 result = v;
   1164 
   1165     float length = (v.x*v.x) + (v.y*v.y) + (v.z*v.z);
   1166     if (length > 0.0f)
   1167     {
   1168         length = sqrtf(length);
   1169 
   1170         float scale = 1;    // By default, 1 as the neutral element.
   1171         if (length < min)
   1172         {
   1173             scale = min/length;
   1174         }
   1175         else if (length > max)
   1176         {
   1177             scale = max/length;
   1178         }
   1179 
   1180         result.x = v.x*scale;
   1181         result.y = v.y*scale;
   1182         result.z = v.z*scale;
   1183     }
   1184 
   1185     return result;
   1186 }
   1187 
   1188 // Check whether two given vectors are almost equal
   1189 RMAPI int Vector3Equals(Vector3 p, Vector3 q)
   1190 {
   1191 #if !defined(EPSILON)
   1192     #define EPSILON 0.000001f
   1193 #endif
   1194 
   1195     int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
   1196                  ((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
   1197                  ((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z)))));
   1198 
   1199     return result;
   1200 }
   1201 
   1202 // Compute the direction of a refracted ray
   1203 // v: normalized direction of the incoming ray
   1204 // n: normalized normal vector of the interface of two optical media
   1205 // r: ratio of the refractive index of the medium from where the ray comes
   1206 //    to the refractive index of the medium on the other side of the surface
   1207 RMAPI Vector3 Vector3Refract(Vector3 v, Vector3 n, float r)
   1208 {
   1209     Vector3 result = { 0 };
   1210 
   1211     float dot = v.x*n.x + v.y*n.y + v.z*n.z;
   1212     float d = 1.0f - r*r*(1.0f - dot*dot);
   1213 
   1214     if (d >= 0.0f)
   1215     {
   1216         d = sqrtf(d);
   1217         v.x = r*v.x - (r*dot + d)*n.x;
   1218         v.y = r*v.y - (r*dot + d)*n.y;
   1219         v.z = r*v.z - (r*dot + d)*n.z;
   1220 
   1221         result = v;
   1222     }
   1223 
   1224     return result;
   1225 }
   1226 
   1227 
   1228 //----------------------------------------------------------------------------------
   1229 // Module Functions Definition - Vector4 math
   1230 //----------------------------------------------------------------------------------
   1231 
   1232 RMAPI Vector4 Vector4Zero(void)
   1233 {
   1234     Vector4 result = { 0.0f, 0.0f, 0.0f, 0.0f };
   1235     return result;
   1236 }
   1237 
   1238 RMAPI Vector4 Vector4One(void)
   1239 {
   1240     Vector4 result = { 1.0f, 1.0f, 1.0f, 1.0f };
   1241     return result;
   1242 }
   1243 
   1244 RMAPI Vector4 Vector4Add(Vector4 v1, Vector4 v2)
   1245 {
   1246     Vector4 result = {
   1247         v1.x + v2.x,
   1248         v1.y + v2.y,
   1249         v1.z + v2.z,
   1250         v1.w + v2.w
   1251     };
   1252     return result;
   1253 }
   1254 
   1255 RMAPI Vector4 Vector4AddValue(Vector4 v, float add)
   1256 {
   1257     Vector4 result = {
   1258         v.x + add,
   1259         v.y + add,
   1260         v.z + add,
   1261         v.w + add
   1262     };
   1263     return result;
   1264 }
   1265 
   1266 RMAPI Vector4 Vector4Subtract(Vector4 v1, Vector4 v2)
   1267 {
   1268     Vector4 result = {
   1269         v1.x - v2.x,
   1270         v1.y - v2.y,
   1271         v1.z - v2.z,
   1272         v1.w - v2.w
   1273     };
   1274     return result;
   1275 }
   1276 
   1277 RMAPI Vector4 Vector4SubtractValue(Vector4 v, float add)
   1278 {
   1279     Vector4 result = {
   1280         v.x - add,
   1281         v.y - add,
   1282         v.z - add,
   1283         v.w - add
   1284     };
   1285     return result;
   1286 }
   1287 
   1288 RMAPI float Vector4Length(Vector4 v)
   1289 {
   1290     float result = sqrtf((v.x*v.x) + (v.y*v.y) + (v.z*v.z) + (v.w*v.w));
   1291     return result;
   1292 }
   1293 
   1294 RMAPI float Vector4LengthSqr(Vector4 v)
   1295 {
   1296     float result = (v.x*v.x) + (v.y*v.y) + (v.z*v.z) + (v.w*v.w);
   1297     return result;
   1298 }
   1299 
   1300 RMAPI float Vector4DotProduct(Vector4 v1, Vector4 v2)
   1301 {
   1302     float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z + v1.w*v2.w);
   1303     return result;
   1304 }
   1305 
   1306 // Calculate distance between two vectors
   1307 RMAPI float Vector4Distance(Vector4 v1, Vector4 v2)
   1308 {
   1309     float result = sqrtf(
   1310         (v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y) +
   1311         (v1.z - v2.z)*(v1.z - v2.z) + (v1.w - v2.w)*(v1.w - v2.w));
   1312     return result;
   1313 }
   1314 
   1315 // Calculate square distance between two vectors
   1316 RMAPI float Vector4DistanceSqr(Vector4 v1, Vector4 v2)
   1317 {
   1318     float result =
   1319         (v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y) +
   1320         (v1.z - v2.z)*(v1.z - v2.z) + (v1.w - v2.w)*(v1.w - v2.w);
   1321 
   1322     return result;
   1323 }
   1324 
   1325 RMAPI Vector4 Vector4Scale(Vector4 v, float scale)
   1326 {
   1327     Vector4 result = { v.x*scale, v.y*scale, v.z*scale, v.w*scale };
   1328     return result;
   1329 }
   1330 
   1331 // Multiply vector by vector
   1332 RMAPI Vector4 Vector4Multiply(Vector4 v1, Vector4 v2)
   1333 {
   1334     Vector4 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z, v1.w*v2.w };
   1335     return result;
   1336 }
   1337 
   1338 // Negate vector
   1339 RMAPI Vector4 Vector4Negate(Vector4 v)
   1340 {
   1341     Vector4 result = { -v.x, -v.y, -v.z, -v.w };
   1342     return result;
   1343 }
   1344 
   1345 // Divide vector by vector
   1346 RMAPI Vector4 Vector4Divide(Vector4 v1, Vector4 v2)
   1347 {
   1348     Vector4 result = { v1.x/v2.x, v1.y/v2.y, v1.z/v2.z, v1.w/v2.w };
   1349     return result;
   1350 }
   1351 
   1352 // Normalize provided vector
   1353 RMAPI Vector4 Vector4Normalize(Vector4 v)
   1354 {
   1355     Vector4 result = { 0 };
   1356     float length = sqrtf((v.x*v.x) + (v.y*v.y) + (v.z*v.z) + (v.w*v.w));
   1357 
   1358     if (length > 0)
   1359     {
   1360         float ilength = 1.0f/length;
   1361         result.x = v.x*ilength;
   1362         result.y = v.y*ilength;
   1363         result.z = v.z*ilength;
   1364         result.w = v.w*ilength;
   1365     }
   1366 
   1367     return result;
   1368 }
   1369 
   1370 // Get min value for each pair of components
   1371 RMAPI Vector4 Vector4Min(Vector4 v1, Vector4 v2)
   1372 {
   1373     Vector4 result = { 0 };
   1374 
   1375     result.x = fminf(v1.x, v2.x);
   1376     result.y = fminf(v1.y, v2.y);
   1377     result.z = fminf(v1.z, v2.z);
   1378     result.w = fminf(v1.w, v2.w);
   1379 
   1380     return result;
   1381 }
   1382 
   1383 // Get max value for each pair of components
   1384 RMAPI Vector4 Vector4Max(Vector4 v1, Vector4 v2)
   1385 {
   1386     Vector4 result = { 0 };
   1387 
   1388     result.x = fmaxf(v1.x, v2.x);
   1389     result.y = fmaxf(v1.y, v2.y);
   1390     result.z = fmaxf(v1.z, v2.z);
   1391     result.w = fmaxf(v1.w, v2.w);
   1392 
   1393     return result;
   1394 }
   1395 
   1396 // Calculate linear interpolation between two vectors
   1397 RMAPI Vector4 Vector4Lerp(Vector4 v1, Vector4 v2, float amount)
   1398 {
   1399     Vector4 result = { 0 };
   1400 
   1401     result.x = v1.x + amount*(v2.x - v1.x);
   1402     result.y = v1.y + amount*(v2.y - v1.y);
   1403     result.z = v1.z + amount*(v2.z - v1.z);
   1404     result.w = v1.w + amount*(v2.w - v1.w);
   1405 
   1406     return result;
   1407 }
   1408 
   1409 // Move Vector towards target
   1410 RMAPI Vector4 Vector4MoveTowards(Vector4 v, Vector4 target, float maxDistance)
   1411 {
   1412     Vector4 result = { 0 };
   1413 
   1414     float dx = target.x - v.x;
   1415     float dy = target.y - v.y;
   1416     float dz = target.z - v.z;
   1417     float dw = target.w - v.w;
   1418     float value = (dx*dx) + (dy*dy) + (dz*dz) + (dw*dw);
   1419 
   1420     if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target;
   1421 
   1422     float dist = sqrtf(value);
   1423 
   1424     result.x = v.x + dx/dist*maxDistance;
   1425     result.y = v.y + dy/dist*maxDistance;
   1426     result.z = v.z + dz/dist*maxDistance;
   1427     result.w = v.w + dw/dist*maxDistance;
   1428 
   1429     return result;
   1430 }
   1431 
   1432 // Invert the given vector
   1433 RMAPI Vector4 Vector4Invert(Vector4 v)
   1434 {
   1435     Vector4 result = { 1.0f/v.x, 1.0f/v.y, 1.0f/v.z, 1.0f/v.w };
   1436     return result;
   1437 }
   1438 
   1439 // Check whether two given vectors are almost equal
   1440 RMAPI int Vector4Equals(Vector4 p, Vector4 q)
   1441 {
   1442 #if !defined(EPSILON)
   1443     #define EPSILON 0.000001f
   1444 #endif
   1445 
   1446     int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
   1447                   ((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
   1448                   ((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) &&
   1449                   ((fabsf(p.w - q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w)))));
   1450     return result;
   1451 }
   1452 
   1453 
   1454 //----------------------------------------------------------------------------------
   1455 // Module Functions Definition - Matrix math
   1456 //----------------------------------------------------------------------------------
   1457 
   1458 // Compute matrix determinant
   1459 RMAPI float MatrixDeterminant(Matrix mat)
   1460 {
   1461     float result = 0.0f;
   1462 
   1463     // Cache the matrix values (speed optimization)
   1464     float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
   1465     float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
   1466     float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
   1467     float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;
   1468 
   1469     result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 +
   1470              a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 +
   1471              a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 +
   1472              a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 +
   1473              a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 +
   1474              a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33;
   1475 
   1476     return result;
   1477 }
   1478 
   1479 // Get the trace of the matrix (sum of the values along the diagonal)
   1480 RMAPI float MatrixTrace(Matrix mat)
   1481 {
   1482     float result = (mat.m0 + mat.m5 + mat.m10 + mat.m15);
   1483 
   1484     return result;
   1485 }
   1486 
   1487 // Transposes provided matrix
   1488 RMAPI Matrix MatrixTranspose(Matrix mat)
   1489 {
   1490     Matrix result = { 0 };
   1491 
   1492     result.m0 = mat.m0;
   1493     result.m1 = mat.m4;
   1494     result.m2 = mat.m8;
   1495     result.m3 = mat.m12;
   1496     result.m4 = mat.m1;
   1497     result.m5 = mat.m5;
   1498     result.m6 = mat.m9;
   1499     result.m7 = mat.m13;
   1500     result.m8 = mat.m2;
   1501     result.m9 = mat.m6;
   1502     result.m10 = mat.m10;
   1503     result.m11 = mat.m14;
   1504     result.m12 = mat.m3;
   1505     result.m13 = mat.m7;
   1506     result.m14 = mat.m11;
   1507     result.m15 = mat.m15;
   1508 
   1509     return result;
   1510 }
   1511 
   1512 // Invert provided matrix
   1513 RMAPI Matrix MatrixInvert(Matrix mat)
   1514 {
   1515     Matrix result = { 0 };
   1516 
   1517     // Cache the matrix values (speed optimization)
   1518     float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
   1519     float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
   1520     float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
   1521     float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;
   1522 
   1523     float b00 = a00*a11 - a01*a10;
   1524     float b01 = a00*a12 - a02*a10;
   1525     float b02 = a00*a13 - a03*a10;
   1526     float b03 = a01*a12 - a02*a11;
   1527     float b04 = a01*a13 - a03*a11;
   1528     float b05 = a02*a13 - a03*a12;
   1529     float b06 = a20*a31 - a21*a30;
   1530     float b07 = a20*a32 - a22*a30;
   1531     float b08 = a20*a33 - a23*a30;
   1532     float b09 = a21*a32 - a22*a31;
   1533     float b10 = a21*a33 - a23*a31;
   1534     float b11 = a22*a33 - a23*a32;
   1535 
   1536     // Calculate the invert determinant (inlined to avoid double-caching)
   1537     float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);
   1538 
   1539     result.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet;
   1540     result.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet;
   1541     result.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet;
   1542     result.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet;
   1543     result.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet;
   1544     result.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet;
   1545     result.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet;
   1546     result.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet;
   1547     result.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet;
   1548     result.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet;
   1549     result.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet;
   1550     result.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet;
   1551     result.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet;
   1552     result.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet;
   1553     result.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet;
   1554     result.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet;
   1555 
   1556     return result;
   1557 }
   1558 
   1559 // Get identity matrix
   1560 RMAPI Matrix MatrixIdentity(void)
   1561 {
   1562     Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
   1563                       0.0f, 1.0f, 0.0f, 0.0f,
   1564                       0.0f, 0.0f, 1.0f, 0.0f,
   1565                       0.0f, 0.0f, 0.0f, 1.0f };
   1566 
   1567     return result;
   1568 }
   1569 
   1570 // Add two matrices
   1571 RMAPI Matrix MatrixAdd(Matrix left, Matrix right)
   1572 {
   1573     Matrix result = { 0 };
   1574 
   1575     result.m0 = left.m0 + right.m0;
   1576     result.m1 = left.m1 + right.m1;
   1577     result.m2 = left.m2 + right.m2;
   1578     result.m3 = left.m3 + right.m3;
   1579     result.m4 = left.m4 + right.m4;
   1580     result.m5 = left.m5 + right.m5;
   1581     result.m6 = left.m6 + right.m6;
   1582     result.m7 = left.m7 + right.m7;
   1583     result.m8 = left.m8 + right.m8;
   1584     result.m9 = left.m9 + right.m9;
   1585     result.m10 = left.m10 + right.m10;
   1586     result.m11 = left.m11 + right.m11;
   1587     result.m12 = left.m12 + right.m12;
   1588     result.m13 = left.m13 + right.m13;
   1589     result.m14 = left.m14 + right.m14;
   1590     result.m15 = left.m15 + right.m15;
   1591 
   1592     return result;
   1593 }
   1594 
   1595 // Subtract two matrices (left - right)
   1596 RMAPI Matrix MatrixSubtract(Matrix left, Matrix right)
   1597 {
   1598     Matrix result = { 0 };
   1599 
   1600     result.m0 = left.m0 - right.m0;
   1601     result.m1 = left.m1 - right.m1;
   1602     result.m2 = left.m2 - right.m2;
   1603     result.m3 = left.m3 - right.m3;
   1604     result.m4 = left.m4 - right.m4;
   1605     result.m5 = left.m5 - right.m5;
   1606     result.m6 = left.m6 - right.m6;
   1607     result.m7 = left.m7 - right.m7;
   1608     result.m8 = left.m8 - right.m8;
   1609     result.m9 = left.m9 - right.m9;
   1610     result.m10 = left.m10 - right.m10;
   1611     result.m11 = left.m11 - right.m11;
   1612     result.m12 = left.m12 - right.m12;
   1613     result.m13 = left.m13 - right.m13;
   1614     result.m14 = left.m14 - right.m14;
   1615     result.m15 = left.m15 - right.m15;
   1616 
   1617     return result;
   1618 }
   1619 
   1620 // Get two matrix multiplication
   1621 // NOTE: When multiplying matrices... the order matters!
   1622 RMAPI Matrix MatrixMultiply(Matrix left, Matrix right)
   1623 {
   1624     Matrix result = { 0 };
   1625 
   1626     result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12;
   1627     result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13;
   1628     result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14;
   1629     result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15;
   1630     result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12;
   1631     result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13;
   1632     result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14;
   1633     result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15;
   1634     result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12;
   1635     result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13;
   1636     result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14;
   1637     result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15;
   1638     result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12;
   1639     result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13;
   1640     result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14;
   1641     result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15;
   1642 
   1643     return result;
   1644 }
   1645 
   1646 // Get translation matrix
   1647 RMAPI Matrix MatrixTranslate(float x, float y, float z)
   1648 {
   1649     Matrix result = { 1.0f, 0.0f, 0.0f, x,
   1650                       0.0f, 1.0f, 0.0f, y,
   1651                       0.0f, 0.0f, 1.0f, z,
   1652                       0.0f, 0.0f, 0.0f, 1.0f };
   1653 
   1654     return result;
   1655 }
   1656 
   1657 // Create rotation matrix from axis and angle
   1658 // NOTE: Angle should be provided in radians
   1659 RMAPI Matrix MatrixRotate(Vector3 axis, float angle)
   1660 {
   1661     Matrix result = { 0 };
   1662 
   1663     float x = axis.x, y = axis.y, z = axis.z;
   1664 
   1665     float lengthSquared = x*x + y*y + z*z;
   1666 
   1667     if ((lengthSquared != 1.0f) && (lengthSquared != 0.0f))
   1668     {
   1669         float ilength = 1.0f/sqrtf(lengthSquared);
   1670         x *= ilength;
   1671         y *= ilength;
   1672         z *= ilength;
   1673     }
   1674 
   1675     float sinres = sinf(angle);
   1676     float cosres = cosf(angle);
   1677     float t = 1.0f - cosres;
   1678 
   1679     result.m0 = x*x*t + cosres;
   1680     result.m1 = y*x*t + z*sinres;
   1681     result.m2 = z*x*t - y*sinres;
   1682     result.m3 = 0.0f;
   1683 
   1684     result.m4 = x*y*t - z*sinres;
   1685     result.m5 = y*y*t + cosres;
   1686     result.m6 = z*y*t + x*sinres;
   1687     result.m7 = 0.0f;
   1688 
   1689     result.m8 = x*z*t + y*sinres;
   1690     result.m9 = y*z*t - x*sinres;
   1691     result.m10 = z*z*t + cosres;
   1692     result.m11 = 0.0f;
   1693 
   1694     result.m12 = 0.0f;
   1695     result.m13 = 0.0f;
   1696     result.m14 = 0.0f;
   1697     result.m15 = 1.0f;
   1698 
   1699     return result;
   1700 }
   1701 
   1702 // Get x-rotation matrix
   1703 // NOTE: Angle must be provided in radians
   1704 RMAPI Matrix MatrixRotateX(float angle)
   1705 {
   1706     Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
   1707                       0.0f, 1.0f, 0.0f, 0.0f,
   1708                       0.0f, 0.0f, 1.0f, 0.0f,
   1709                       0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
   1710 
   1711     float cosres = cosf(angle);
   1712     float sinres = sinf(angle);
   1713 
   1714     result.m5 = cosres;
   1715     result.m6 = sinres;
   1716     result.m9 = -sinres;
   1717     result.m10 = cosres;
   1718 
   1719     return result;
   1720 }
   1721 
   1722 // Get y-rotation matrix
   1723 // NOTE: Angle must be provided in radians
   1724 RMAPI Matrix MatrixRotateY(float angle)
   1725 {
   1726     Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
   1727                       0.0f, 1.0f, 0.0f, 0.0f,
   1728                       0.0f, 0.0f, 1.0f, 0.0f,
   1729                       0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
   1730 
   1731     float cosres = cosf(angle);
   1732     float sinres = sinf(angle);
   1733 
   1734     result.m0 = cosres;
   1735     result.m2 = -sinres;
   1736     result.m8 = sinres;
   1737     result.m10 = cosres;
   1738 
   1739     return result;
   1740 }
   1741 
   1742 // Get z-rotation matrix
   1743 // NOTE: Angle must be provided in radians
   1744 RMAPI Matrix MatrixRotateZ(float angle)
   1745 {
   1746     Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
   1747                       0.0f, 1.0f, 0.0f, 0.0f,
   1748                       0.0f, 0.0f, 1.0f, 0.0f,
   1749                       0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
   1750 
   1751     float cosres = cosf(angle);
   1752     float sinres = sinf(angle);
   1753 
   1754     result.m0 = cosres;
   1755     result.m1 = sinres;
   1756     result.m4 = -sinres;
   1757     result.m5 = cosres;
   1758 
   1759     return result;
   1760 }
   1761 
   1762 
   1763 // Get xyz-rotation matrix
   1764 // NOTE: Angle must be provided in radians
   1765 RMAPI Matrix MatrixRotateXYZ(Vector3 angle)
   1766 {
   1767     Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
   1768                       0.0f, 1.0f, 0.0f, 0.0f,
   1769                       0.0f, 0.0f, 1.0f, 0.0f,
   1770                       0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
   1771 
   1772     float cosz = cosf(-angle.z);
   1773     float sinz = sinf(-angle.z);
   1774     float cosy = cosf(-angle.y);
   1775     float siny = sinf(-angle.y);
   1776     float cosx = cosf(-angle.x);
   1777     float sinx = sinf(-angle.x);
   1778 
   1779     result.m0 = cosz*cosy;
   1780     result.m1 = (cosz*siny*sinx) - (sinz*cosx);
   1781     result.m2 = (cosz*siny*cosx) + (sinz*sinx);
   1782 
   1783     result.m4 = sinz*cosy;
   1784     result.m5 = (sinz*siny*sinx) + (cosz*cosx);
   1785     result.m6 = (sinz*siny*cosx) - (cosz*sinx);
   1786 
   1787     result.m8 = -siny;
   1788     result.m9 = cosy*sinx;
   1789     result.m10= cosy*cosx;
   1790 
   1791     return result;
   1792 }
   1793 
   1794 // Get zyx-rotation matrix
   1795 // NOTE: Angle must be provided in radians
   1796 RMAPI Matrix MatrixRotateZYX(Vector3 angle)
   1797 {
   1798     Matrix result = { 0 };
   1799 
   1800     float cz = cosf(angle.z);
   1801     float sz = sinf(angle.z);
   1802     float cy = cosf(angle.y);
   1803     float sy = sinf(angle.y);
   1804     float cx = cosf(angle.x);
   1805     float sx = sinf(angle.x);
   1806 
   1807     result.m0 = cz*cy;
   1808     result.m4 = cz*sy*sx - cx*sz;
   1809     result.m8 = sz*sx + cz*cx*sy;
   1810     result.m12 = 0;
   1811 
   1812     result.m1 = cy*sz;
   1813     result.m5 = cz*cx + sz*sy*sx;
   1814     result.m9 = cx*sz*sy - cz*sx;
   1815     result.m13 = 0;
   1816 
   1817     result.m2 = -sy;
   1818     result.m6 = cy*sx;
   1819     result.m10 = cy*cx;
   1820     result.m14 = 0;
   1821 
   1822     result.m3 = 0;
   1823     result.m7 = 0;
   1824     result.m11 = 0;
   1825     result.m15 = 1;
   1826 
   1827     return result;
   1828 }
   1829 
   1830 // Get scaling matrix
   1831 RMAPI Matrix MatrixScale(float x, float y, float z)
   1832 {
   1833     Matrix result = { x, 0.0f, 0.0f, 0.0f,
   1834                       0.0f, y, 0.0f, 0.0f,
   1835                       0.0f, 0.0f, z, 0.0f,
   1836                       0.0f, 0.0f, 0.0f, 1.0f };
   1837 
   1838     return result;
   1839 }
   1840 
   1841 // Get perspective projection matrix
   1842 RMAPI Matrix MatrixFrustum(double left, double right, double bottom, double top, double nearPlane, double farPlane)
   1843 {
   1844     Matrix result = { 0 };
   1845 
   1846     float rl = (float)(right - left);
   1847     float tb = (float)(top - bottom);
   1848     float fn = (float)(farPlane - nearPlane);
   1849 
   1850     result.m0 = ((float)nearPlane*2.0f)/rl;
   1851     result.m1 = 0.0f;
   1852     result.m2 = 0.0f;
   1853     result.m3 = 0.0f;
   1854 
   1855     result.m4 = 0.0f;
   1856     result.m5 = ((float)nearPlane*2.0f)/tb;
   1857     result.m6 = 0.0f;
   1858     result.m7 = 0.0f;
   1859 
   1860     result.m8 = ((float)right + (float)left)/rl;
   1861     result.m9 = ((float)top + (float)bottom)/tb;
   1862     result.m10 = -((float)farPlane + (float)nearPlane)/fn;
   1863     result.m11 = -1.0f;
   1864 
   1865     result.m12 = 0.0f;
   1866     result.m13 = 0.0f;
   1867     result.m14 = -((float)farPlane*(float)nearPlane*2.0f)/fn;
   1868     result.m15 = 0.0f;
   1869 
   1870     return result;
   1871 }
   1872 
   1873 // Get perspective projection matrix
   1874 // NOTE: Fovy angle must be provided in radians
   1875 RMAPI Matrix MatrixPerspective(double fovY, double aspect, double nearPlane, double farPlane)
   1876 {
   1877     Matrix result = { 0 };
   1878 
   1879     double top = nearPlane*tan(fovY*0.5);
   1880     double bottom = -top;
   1881     double right = top*aspect;
   1882     double left = -right;
   1883 
   1884     // MatrixFrustum(-right, right, -top, top, near, far);
   1885     float rl = (float)(right - left);
   1886     float tb = (float)(top - bottom);
   1887     float fn = (float)(farPlane - nearPlane);
   1888 
   1889     result.m0 = ((float)nearPlane*2.0f)/rl;
   1890     result.m5 = ((float)nearPlane*2.0f)/tb;
   1891     result.m8 = ((float)right + (float)left)/rl;
   1892     result.m9 = ((float)top + (float)bottom)/tb;
   1893     result.m10 = -((float)farPlane + (float)nearPlane)/fn;
   1894     result.m11 = -1.0f;
   1895     result.m14 = -((float)farPlane*(float)nearPlane*2.0f)/fn;
   1896 
   1897     return result;
   1898 }
   1899 
   1900 // Get orthographic projection matrix
   1901 RMAPI Matrix MatrixOrtho(double left, double right, double bottom, double top, double nearPlane, double farPlane)
   1902 {
   1903     Matrix result = { 0 };
   1904 
   1905     float rl = (float)(right - left);
   1906     float tb = (float)(top - bottom);
   1907     float fn = (float)(farPlane - nearPlane);
   1908 
   1909     result.m0 = 2.0f/rl;
   1910     result.m1 = 0.0f;
   1911     result.m2 = 0.0f;
   1912     result.m3 = 0.0f;
   1913     result.m4 = 0.0f;
   1914     result.m5 = 2.0f/tb;
   1915     result.m6 = 0.0f;
   1916     result.m7 = 0.0f;
   1917     result.m8 = 0.0f;
   1918     result.m9 = 0.0f;
   1919     result.m10 = -2.0f/fn;
   1920     result.m11 = 0.0f;
   1921     result.m12 = -((float)left + (float)right)/rl;
   1922     result.m13 = -((float)top + (float)bottom)/tb;
   1923     result.m14 = -((float)farPlane + (float)nearPlane)/fn;
   1924     result.m15 = 1.0f;
   1925 
   1926     return result;
   1927 }
   1928 
   1929 // Get camera look-at matrix (view matrix)
   1930 RMAPI Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up)
   1931 {
   1932     Matrix result = { 0 };
   1933 
   1934     float length = 0.0f;
   1935     float ilength = 0.0f;
   1936 
   1937     // Vector3Subtract(eye, target)
   1938     Vector3 vz = { eye.x - target.x, eye.y - target.y, eye.z - target.z };
   1939 
   1940     // Vector3Normalize(vz)
   1941     Vector3 v = vz;
   1942     length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
   1943     if (length == 0.0f) length = 1.0f;
   1944     ilength = 1.0f/length;
   1945     vz.x *= ilength;
   1946     vz.y *= ilength;
   1947     vz.z *= ilength;
   1948 
   1949     // Vector3CrossProduct(up, vz)
   1950     Vector3 vx = { up.y*vz.z - up.z*vz.y, up.z*vz.x - up.x*vz.z, up.x*vz.y - up.y*vz.x };
   1951 
   1952     // Vector3Normalize(x)
   1953     v = vx;
   1954     length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
   1955     if (length == 0.0f) length = 1.0f;
   1956     ilength = 1.0f/length;
   1957     vx.x *= ilength;
   1958     vx.y *= ilength;
   1959     vx.z *= ilength;
   1960 
   1961     // Vector3CrossProduct(vz, vx)
   1962     Vector3 vy = { vz.y*vx.z - vz.z*vx.y, vz.z*vx.x - vz.x*vx.z, vz.x*vx.y - vz.y*vx.x };
   1963 
   1964     result.m0 = vx.x;
   1965     result.m1 = vy.x;
   1966     result.m2 = vz.x;
   1967     result.m3 = 0.0f;
   1968     result.m4 = vx.y;
   1969     result.m5 = vy.y;
   1970     result.m6 = vz.y;
   1971     result.m7 = 0.0f;
   1972     result.m8 = vx.z;
   1973     result.m9 = vy.z;
   1974     result.m10 = vz.z;
   1975     result.m11 = 0.0f;
   1976     result.m12 = -(vx.x*eye.x + vx.y*eye.y + vx.z*eye.z);   // Vector3DotProduct(vx, eye)
   1977     result.m13 = -(vy.x*eye.x + vy.y*eye.y + vy.z*eye.z);   // Vector3DotProduct(vy, eye)
   1978     result.m14 = -(vz.x*eye.x + vz.y*eye.y + vz.z*eye.z);   // Vector3DotProduct(vz, eye)
   1979     result.m15 = 1.0f;
   1980 
   1981     return result;
   1982 }
   1983 
   1984 // Get float array of matrix data
   1985 RMAPI float16 MatrixToFloatV(Matrix mat)
   1986 {
   1987     float16 result = { 0 };
   1988 
   1989     result.v[0] = mat.m0;
   1990     result.v[1] = mat.m1;
   1991     result.v[2] = mat.m2;
   1992     result.v[3] = mat.m3;
   1993     result.v[4] = mat.m4;
   1994     result.v[5] = mat.m5;
   1995     result.v[6] = mat.m6;
   1996     result.v[7] = mat.m7;
   1997     result.v[8] = mat.m8;
   1998     result.v[9] = mat.m9;
   1999     result.v[10] = mat.m10;
   2000     result.v[11] = mat.m11;
   2001     result.v[12] = mat.m12;
   2002     result.v[13] = mat.m13;
   2003     result.v[14] = mat.m14;
   2004     result.v[15] = mat.m15;
   2005 
   2006     return result;
   2007 }
   2008 
   2009 //----------------------------------------------------------------------------------
   2010 // Module Functions Definition - Quaternion math
   2011 //----------------------------------------------------------------------------------
   2012 
   2013 // Add two quaternions
   2014 RMAPI Quaternion QuaternionAdd(Quaternion q1, Quaternion q2)
   2015 {
   2016     Quaternion result = {q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w};
   2017 
   2018     return result;
   2019 }
   2020 
   2021 // Add quaternion and float value
   2022 RMAPI Quaternion QuaternionAddValue(Quaternion q, float add)
   2023 {
   2024     Quaternion result = {q.x + add, q.y + add, q.z + add, q.w + add};
   2025 
   2026     return result;
   2027 }
   2028 
   2029 // Subtract two quaternions
   2030 RMAPI Quaternion QuaternionSubtract(Quaternion q1, Quaternion q2)
   2031 {
   2032     Quaternion result = {q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w};
   2033 
   2034     return result;
   2035 }
   2036 
   2037 // Subtract quaternion and float value
   2038 RMAPI Quaternion QuaternionSubtractValue(Quaternion q, float sub)
   2039 {
   2040     Quaternion result = {q.x - sub, q.y - sub, q.z - sub, q.w - sub};
   2041 
   2042     return result;
   2043 }
   2044 
   2045 // Get identity quaternion
   2046 RMAPI Quaternion QuaternionIdentity(void)
   2047 {
   2048     Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
   2049 
   2050     return result;
   2051 }
   2052 
   2053 // Computes the length of a quaternion
   2054 RMAPI float QuaternionLength(Quaternion q)
   2055 {
   2056     float result = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
   2057 
   2058     return result;
   2059 }
   2060 
   2061 // Normalize provided quaternion
   2062 RMAPI Quaternion QuaternionNormalize(Quaternion q)
   2063 {
   2064     Quaternion result = { 0 };
   2065 
   2066     float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
   2067     if (length == 0.0f) length = 1.0f;
   2068     float ilength = 1.0f/length;
   2069 
   2070     result.x = q.x*ilength;
   2071     result.y = q.y*ilength;
   2072     result.z = q.z*ilength;
   2073     result.w = q.w*ilength;
   2074 
   2075     return result;
   2076 }
   2077 
   2078 // Invert provided quaternion
   2079 RMAPI Quaternion QuaternionInvert(Quaternion q)
   2080 {
   2081     Quaternion result = q;
   2082 
   2083     float lengthSq = q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w;
   2084 
   2085     if (lengthSq != 0.0f)
   2086     {
   2087         float invLength = 1.0f/lengthSq;
   2088 
   2089         result.x *= -invLength;
   2090         result.y *= -invLength;
   2091         result.z *= -invLength;
   2092         result.w *= invLength;
   2093     }
   2094 
   2095     return result;
   2096 }
   2097 
   2098 // Calculate two quaternion multiplication
   2099 RMAPI Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2)
   2100 {
   2101     Quaternion result = { 0 };
   2102 
   2103     float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w;
   2104     float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w;
   2105 
   2106     result.x = qax*qbw + qaw*qbx + qay*qbz - qaz*qby;
   2107     result.y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz;
   2108     result.z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx;
   2109     result.w = qaw*qbw - qax*qbx - qay*qby - qaz*qbz;
   2110 
   2111     return result;
   2112 }
   2113 
   2114 // Scale quaternion by float value
   2115 RMAPI Quaternion QuaternionScale(Quaternion q, float mul)
   2116 {
   2117     Quaternion result = { 0 };
   2118 
   2119     result.x = q.x*mul;
   2120     result.y = q.y*mul;
   2121     result.z = q.z*mul;
   2122     result.w = q.w*mul;
   2123 
   2124     return result;
   2125 }
   2126 
   2127 // Divide two quaternions
   2128 RMAPI Quaternion QuaternionDivide(Quaternion q1, Quaternion q2)
   2129 {
   2130     Quaternion result = { q1.x/q2.x, q1.y/q2.y, q1.z/q2.z, q1.w/q2.w };
   2131 
   2132     return result;
   2133 }
   2134 
   2135 // Calculate linear interpolation between two quaternions
   2136 RMAPI Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount)
   2137 {
   2138     Quaternion result = { 0 };
   2139 
   2140     result.x = q1.x + amount*(q2.x - q1.x);
   2141     result.y = q1.y + amount*(q2.y - q1.y);
   2142     result.z = q1.z + amount*(q2.z - q1.z);
   2143     result.w = q1.w + amount*(q2.w - q1.w);
   2144 
   2145     return result;
   2146 }
   2147 
   2148 // Calculate slerp-optimized interpolation between two quaternions
   2149 RMAPI Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount)
   2150 {
   2151     Quaternion result = { 0 };
   2152 
   2153     // QuaternionLerp(q1, q2, amount)
   2154     result.x = q1.x + amount*(q2.x - q1.x);
   2155     result.y = q1.y + amount*(q2.y - q1.y);
   2156     result.z = q1.z + amount*(q2.z - q1.z);
   2157     result.w = q1.w + amount*(q2.w - q1.w);
   2158 
   2159     // QuaternionNormalize(q);
   2160     Quaternion q = result;
   2161     float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
   2162     if (length == 0.0f) length = 1.0f;
   2163     float ilength = 1.0f/length;
   2164 
   2165     result.x = q.x*ilength;
   2166     result.y = q.y*ilength;
   2167     result.z = q.z*ilength;
   2168     result.w = q.w*ilength;
   2169 
   2170     return result;
   2171 }
   2172 
   2173 // Calculates spherical linear interpolation between two quaternions
   2174 RMAPI Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
   2175 {
   2176     Quaternion result = { 0 };
   2177 
   2178 #if !defined(EPSILON)
   2179     #define EPSILON 0.000001f
   2180 #endif
   2181 
   2182     float cosHalfTheta = q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w;
   2183 
   2184     if (cosHalfTheta < 0)
   2185     {
   2186         q2.x = -q2.x; q2.y = -q2.y; q2.z = -q2.z; q2.w = -q2.w;
   2187         cosHalfTheta = -cosHalfTheta;
   2188     }
   2189 
   2190     if (fabsf(cosHalfTheta) >= 1.0f) result = q1;
   2191     else if (cosHalfTheta > 0.95f) result = QuaternionNlerp(q1, q2, amount);
   2192     else
   2193     {
   2194         float halfTheta = acosf(cosHalfTheta);
   2195         float sinHalfTheta = sqrtf(1.0f - cosHalfTheta*cosHalfTheta);
   2196 
   2197         if (fabsf(sinHalfTheta) < EPSILON)
   2198         {
   2199             result.x = (q1.x*0.5f + q2.x*0.5f);
   2200             result.y = (q1.y*0.5f + q2.y*0.5f);
   2201             result.z = (q1.z*0.5f + q2.z*0.5f);
   2202             result.w = (q1.w*0.5f + q2.w*0.5f);
   2203         }
   2204         else
   2205         {
   2206             float ratioA = sinf((1 - amount)*halfTheta)/sinHalfTheta;
   2207             float ratioB = sinf(amount*halfTheta)/sinHalfTheta;
   2208 
   2209             result.x = (q1.x*ratioA + q2.x*ratioB);
   2210             result.y = (q1.y*ratioA + q2.y*ratioB);
   2211             result.z = (q1.z*ratioA + q2.z*ratioB);
   2212             result.w = (q1.w*ratioA + q2.w*ratioB);
   2213         }
   2214     }
   2215 
   2216     return result;
   2217 }
   2218 
   2219 // Calculate quaternion cubic spline interpolation using Cubic Hermite Spline algorithm
   2220 // as described in the GLTF 2.0 specification: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#interpolation-cubic
   2221 RMAPI Quaternion QuaternionCubicHermiteSpline(Quaternion q1, Quaternion outTangent1, Quaternion q2, Quaternion inTangent2, float t)
   2222 {
   2223     float t2 = t*t;
   2224     float t3 = t2*t;
   2225     float h00 = 2*t3 - 3*t2 + 1;
   2226     float h10 = t3 - 2*t2 + t;
   2227     float h01 = -2*t3 + 3*t2;
   2228     float h11 = t3 - t2;
   2229 
   2230     Quaternion p0 = QuaternionScale(q1, h00);
   2231     Quaternion m0 = QuaternionScale(outTangent1, h10);
   2232     Quaternion p1 = QuaternionScale(q2, h01);
   2233     Quaternion m1 = QuaternionScale(inTangent2, h11);
   2234 
   2235     Quaternion result = { 0 };
   2236 
   2237     result = QuaternionAdd(p0, m0);
   2238     result = QuaternionAdd(result, p1);
   2239     result = QuaternionAdd(result, m1);
   2240     result = QuaternionNormalize(result);
   2241 
   2242     return result;
   2243 }
   2244 
   2245 // Calculate quaternion based on the rotation from one vector to another
   2246 RMAPI Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to)
   2247 {
   2248     Quaternion result = { 0 };
   2249 
   2250     float cos2Theta = (from.x*to.x + from.y*to.y + from.z*to.z);    // Vector3DotProduct(from, to)
   2251     Vector3 cross = { from.y*to.z - from.z*to.y, from.z*to.x - from.x*to.z, from.x*to.y - from.y*to.x }; // Vector3CrossProduct(from, to)
   2252 
   2253     result.x = cross.x;
   2254     result.y = cross.y;
   2255     result.z = cross.z;
   2256     result.w = 1.0f + cos2Theta;
   2257 
   2258     // QuaternionNormalize(q);
   2259     // NOTE: Normalize to essentially nlerp the original and identity to 0.5
   2260     Quaternion q = result;
   2261     float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
   2262     if (length == 0.0f) length = 1.0f;
   2263     float ilength = 1.0f/length;
   2264 
   2265     result.x = q.x*ilength;
   2266     result.y = q.y*ilength;
   2267     result.z = q.z*ilength;
   2268     result.w = q.w*ilength;
   2269 
   2270     return result;
   2271 }
   2272 
   2273 // Get a quaternion for a given rotation matrix
   2274 RMAPI Quaternion QuaternionFromMatrix(Matrix mat)
   2275 {
   2276     Quaternion result = { 0 };
   2277 
   2278     float fourWSquaredMinus1 = mat.m0  + mat.m5 + mat.m10;
   2279     float fourXSquaredMinus1 = mat.m0  - mat.m5 - mat.m10;
   2280     float fourYSquaredMinus1 = mat.m5  - mat.m0 - mat.m10;
   2281     float fourZSquaredMinus1 = mat.m10 - mat.m0 - mat.m5;
   2282 
   2283     int biggestIndex = 0;
   2284     float fourBiggestSquaredMinus1 = fourWSquaredMinus1;
   2285     if (fourXSquaredMinus1 > fourBiggestSquaredMinus1)
   2286     {
   2287         fourBiggestSquaredMinus1 = fourXSquaredMinus1;
   2288         biggestIndex = 1;
   2289     }
   2290 
   2291     if (fourYSquaredMinus1 > fourBiggestSquaredMinus1)
   2292     {
   2293         fourBiggestSquaredMinus1 = fourYSquaredMinus1;
   2294         biggestIndex = 2;
   2295     }
   2296 
   2297     if (fourZSquaredMinus1 > fourBiggestSquaredMinus1)
   2298     {
   2299         fourBiggestSquaredMinus1 = fourZSquaredMinus1;
   2300         biggestIndex = 3;
   2301     }
   2302 
   2303     float biggestVal = sqrtf(fourBiggestSquaredMinus1 + 1.0f)*0.5f;
   2304     float mult = 0.25f/biggestVal;
   2305 
   2306     switch (biggestIndex)
   2307     {
   2308         case 0:
   2309             result.w = biggestVal;
   2310             result.x = (mat.m6 - mat.m9)*mult;
   2311             result.y = (mat.m8 - mat.m2)*mult;
   2312             result.z = (mat.m1 - mat.m4)*mult;
   2313             break;
   2314         case 1:
   2315             result.x = biggestVal;
   2316             result.w = (mat.m6 - mat.m9)*mult;
   2317             result.y = (mat.m1 + mat.m4)*mult;
   2318             result.z = (mat.m8 + mat.m2)*mult;
   2319             break;
   2320         case 2:
   2321             result.y = biggestVal;
   2322             result.w = (mat.m8 - mat.m2)*mult;
   2323             result.x = (mat.m1 + mat.m4)*mult;
   2324             result.z = (mat.m6 + mat.m9)*mult;
   2325             break;
   2326         case 3:
   2327             result.z = biggestVal;
   2328             result.w = (mat.m1 - mat.m4)*mult;
   2329             result.x = (mat.m8 + mat.m2)*mult;
   2330             result.y = (mat.m6 + mat.m9)*mult;
   2331             break;
   2332     }
   2333 
   2334     return result;
   2335 }
   2336 
   2337 // Get a matrix for a given quaternion
   2338 RMAPI Matrix QuaternionToMatrix(Quaternion q)
   2339 {
   2340     Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
   2341                       0.0f, 1.0f, 0.0f, 0.0f,
   2342                       0.0f, 0.0f, 1.0f, 0.0f,
   2343                       0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity()
   2344 
   2345     float a2 = q.x*q.x;
   2346     float b2 = q.y*q.y;
   2347     float c2 = q.z*q.z;
   2348     float ac = q.x*q.z;
   2349     float ab = q.x*q.y;
   2350     float bc = q.y*q.z;
   2351     float ad = q.w*q.x;
   2352     float bd = q.w*q.y;
   2353     float cd = q.w*q.z;
   2354 
   2355     result.m0 = 1 - 2*(b2 + c2);
   2356     result.m1 = 2*(ab + cd);
   2357     result.m2 = 2*(ac - bd);
   2358 
   2359     result.m4 = 2*(ab - cd);
   2360     result.m5 = 1 - 2*(a2 + c2);
   2361     result.m6 = 2*(bc + ad);
   2362 
   2363     result.m8 = 2*(ac + bd);
   2364     result.m9 = 2*(bc - ad);
   2365     result.m10 = 1 - 2*(a2 + b2);
   2366 
   2367     return result;
   2368 }
   2369 
   2370 // Get rotation quaternion for an angle and axis
   2371 // NOTE: Angle must be provided in radians
   2372 RMAPI Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle)
   2373 {
   2374     Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
   2375 
   2376     float axisLength = sqrtf(axis.x*axis.x + axis.y*axis.y + axis.z*axis.z);
   2377 
   2378     if (axisLength != 0.0f)
   2379     {
   2380         angle *= 0.5f;
   2381 
   2382         float length = 0.0f;
   2383         float ilength = 0.0f;
   2384 
   2385         // Vector3Normalize(axis)
   2386         length = axisLength;
   2387         if (length == 0.0f) length = 1.0f;
   2388         ilength = 1.0f/length;
   2389         axis.x *= ilength;
   2390         axis.y *= ilength;
   2391         axis.z *= ilength;
   2392 
   2393         float sinres = sinf(angle);
   2394         float cosres = cosf(angle);
   2395 
   2396         result.x = axis.x*sinres;
   2397         result.y = axis.y*sinres;
   2398         result.z = axis.z*sinres;
   2399         result.w = cosres;
   2400 
   2401         // QuaternionNormalize(q);
   2402         Quaternion q = result;
   2403         length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
   2404         if (length == 0.0f) length = 1.0f;
   2405         ilength = 1.0f/length;
   2406         result.x = q.x*ilength;
   2407         result.y = q.y*ilength;
   2408         result.z = q.z*ilength;
   2409         result.w = q.w*ilength;
   2410     }
   2411 
   2412     return result;
   2413 }
   2414 
   2415 // Get the rotation angle and axis for a given quaternion
   2416 RMAPI void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle)
   2417 {
   2418     if (fabsf(q.w) > 1.0f)
   2419     {
   2420         // QuaternionNormalize(q);
   2421         float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
   2422         if (length == 0.0f) length = 1.0f;
   2423         float ilength = 1.0f/length;
   2424 
   2425         q.x = q.x*ilength;
   2426         q.y = q.y*ilength;
   2427         q.z = q.z*ilength;
   2428         q.w = q.w*ilength;
   2429     }
   2430 
   2431     Vector3 resAxis = { 0.0f, 0.0f, 0.0f };
   2432     float resAngle = 2.0f*acosf(q.w);
   2433     float den = sqrtf(1.0f - q.w*q.w);
   2434 
   2435     if (den > EPSILON)
   2436     {
   2437         resAxis.x = q.x/den;
   2438         resAxis.y = q.y/den;
   2439         resAxis.z = q.z/den;
   2440     }
   2441     else
   2442     {
   2443         // This occurs when the angle is zero.
   2444         // Not a problem: just set an arbitrary normalized axis.
   2445         resAxis.x = 1.0f;
   2446     }
   2447 
   2448     *outAxis = resAxis;
   2449     *outAngle = resAngle;
   2450 }
   2451 
   2452 // Get the quaternion equivalent to Euler angles
   2453 // NOTE: Rotation order is ZYX
   2454 RMAPI Quaternion QuaternionFromEuler(float pitch, float yaw, float roll)
   2455 {
   2456     Quaternion result = { 0 };
   2457 
   2458     float x0 = cosf(pitch*0.5f);
   2459     float x1 = sinf(pitch*0.5f);
   2460     float y0 = cosf(yaw*0.5f);
   2461     float y1 = sinf(yaw*0.5f);
   2462     float z0 = cosf(roll*0.5f);
   2463     float z1 = sinf(roll*0.5f);
   2464 
   2465     result.x = x1*y0*z0 - x0*y1*z1;
   2466     result.y = x0*y1*z0 + x1*y0*z1;
   2467     result.z = x0*y0*z1 - x1*y1*z0;
   2468     result.w = x0*y0*z0 + x1*y1*z1;
   2469 
   2470     return result;
   2471 }
   2472 
   2473 // Get the Euler angles equivalent to quaternion (roll, pitch, yaw)
   2474 // NOTE: Angles are returned in a Vector3 struct in radians
   2475 RMAPI Vector3 QuaternionToEuler(Quaternion q)
   2476 {
   2477     Vector3 result = { 0 };
   2478 
   2479     // Roll (x-axis rotation)
   2480     float x0 = 2.0f*(q.w*q.x + q.y*q.z);
   2481     float x1 = 1.0f - 2.0f*(q.x*q.x + q.y*q.y);
   2482     result.x = atan2f(x0, x1);
   2483 
   2484     // Pitch (y-axis rotation)
   2485     float y0 = 2.0f*(q.w*q.y - q.z*q.x);
   2486     y0 = y0 > 1.0f ? 1.0f : y0;
   2487     y0 = y0 < -1.0f ? -1.0f : y0;
   2488     result.y = asinf(y0);
   2489 
   2490     // Yaw (z-axis rotation)
   2491     float z0 = 2.0f*(q.w*q.z + q.x*q.y);
   2492     float z1 = 1.0f - 2.0f*(q.y*q.y + q.z*q.z);
   2493     result.z = atan2f(z0, z1);
   2494 
   2495     return result;
   2496 }
   2497 
   2498 // Transform a quaternion given a transformation matrix
   2499 RMAPI Quaternion QuaternionTransform(Quaternion q, Matrix mat)
   2500 {
   2501     Quaternion result = { 0 };
   2502 
   2503     result.x = mat.m0*q.x + mat.m4*q.y + mat.m8*q.z + mat.m12*q.w;
   2504     result.y = mat.m1*q.x + mat.m5*q.y + mat.m9*q.z + mat.m13*q.w;
   2505     result.z = mat.m2*q.x + mat.m6*q.y + mat.m10*q.z + mat.m14*q.w;
   2506     result.w = mat.m3*q.x + mat.m7*q.y + mat.m11*q.z + mat.m15*q.w;
   2507 
   2508     return result;
   2509 }
   2510 
   2511 // Check whether two given quaternions are almost equal
   2512 RMAPI int QuaternionEquals(Quaternion p, Quaternion q)
   2513 {
   2514 #if !defined(EPSILON)
   2515     #define EPSILON 0.000001f
   2516 #endif
   2517 
   2518     int result = (((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
   2519                   ((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
   2520                   ((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) &&
   2521                   ((fabsf(p.w - q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w)))))) ||
   2522                  (((fabsf(p.x + q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) &&
   2523                   ((fabsf(p.y + q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) &&
   2524                   ((fabsf(p.z + q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) &&
   2525                   ((fabsf(p.w + q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w))))));
   2526 
   2527     return result;
   2528 }
   2529 
   2530 // Decompose a transformation matrix into its rotational, translational and scaling components
   2531 RMAPI void MatrixDecompose(Matrix mat, Vector3 *translation, Quaternion *rotation, Vector3 *scale)
   2532 {
   2533     // Extract translation.
   2534     translation->x = mat.m12;
   2535     translation->y = mat.m13;
   2536     translation->z = mat.m14;
   2537 
   2538     // Extract upper-left for determinant computation
   2539     const float a = mat.m0;
   2540     const float b = mat.m4;
   2541     const float c = mat.m8;
   2542     const float d = mat.m1;
   2543     const float e = mat.m5;
   2544     const float f = mat.m9;
   2545     const float g = mat.m2;
   2546     const float h = mat.m6;
   2547     const float i = mat.m10;
   2548     const float A = e*i - f*h;
   2549     const float B = f*g - d*i;
   2550     const float C = d*h - e*g;
   2551 
   2552     // Extract scale
   2553     const float det = a*A + b*B + c*C;
   2554     Vector3 abc = { a, b, c };
   2555     Vector3 def = { d, e, f };
   2556     Vector3 ghi = { g, h, i };
   2557 
   2558     float scalex = Vector3Length(abc);
   2559     float scaley = Vector3Length(def);
   2560     float scalez = Vector3Length(ghi);
   2561     Vector3 s = { scalex, scaley, scalez };
   2562 
   2563     if (det < 0) s = Vector3Negate(s);
   2564 
   2565     *scale = s;
   2566 
   2567     // Remove scale from the matrix if it is not close to zero
   2568     Matrix clone = mat;
   2569     if (!FloatEquals(det, 0))
   2570     {
   2571         clone.m0 /= s.x;
   2572         clone.m4 /= s.x;
   2573         clone.m8 /= s.x;
   2574         clone.m1 /= s.y;
   2575         clone.m5 /= s.y;
   2576         clone.m9 /= s.y;
   2577         clone.m2 /= s.z;
   2578         clone.m6 /= s.z;
   2579         clone.m10 /= s.z;
   2580 
   2581         // Extract rotation
   2582         *rotation = QuaternionFromMatrix(clone);
   2583     }
   2584     else
   2585     {
   2586         // Set to identity if close to zero
   2587         *rotation = QuaternionIdentity();
   2588     }
   2589 }
   2590 
   2591 #if defined(__cplusplus) && !defined(RAYMATH_DISABLE_CPP_OPERATORS)
   2592 
   2593 // Optional C++ math operators
   2594 //-------------------------------------------------------------------------------
   2595 
   2596 // Vector2 operators
   2597 static constexpr Vector2 Vector2Zeros = { 0, 0 };
   2598 static constexpr Vector2 Vector2Ones = { 1, 1 };
   2599 static constexpr Vector2 Vector2UnitX = { 1, 0 };
   2600 static constexpr Vector2 Vector2UnitY = { 0, 1 };
   2601 
   2602 inline Vector2 operator + (const Vector2& lhs, const Vector2& rhs)
   2603 {
   2604     return Vector2Add(lhs, rhs);
   2605 }
   2606 
   2607 inline const Vector2& operator += (Vector2& lhs, const Vector2& rhs)
   2608 {
   2609     lhs = Vector2Add(lhs, rhs);
   2610     return lhs;
   2611 }
   2612 
   2613 inline Vector2 operator - (const Vector2& lhs, const Vector2& rhs)
   2614 {
   2615     return Vector2Subtract(lhs, rhs);
   2616 }
   2617 
   2618 inline const Vector2& operator -= (Vector2& lhs, const Vector2& rhs)
   2619 {
   2620     lhs = Vector2Subtract(lhs, rhs);
   2621     return lhs;
   2622 }
   2623 
   2624 inline Vector2 operator * (const Vector2& lhs, const float& rhs)
   2625 {
   2626     return Vector2Scale(lhs, rhs);
   2627 }
   2628 
   2629 inline const Vector2& operator *= (Vector2& lhs, const float& rhs)
   2630 {
   2631     lhs = Vector2Scale(lhs, rhs);
   2632     return lhs;
   2633 }
   2634 
   2635 inline Vector2 operator * (const Vector2& lhs, const Vector2& rhs)
   2636 {
   2637     return Vector2Multiply(lhs, rhs);
   2638 }
   2639 
   2640 inline const Vector2& operator *= (Vector2& lhs, const Vector2& rhs)
   2641 {
   2642     lhs = Vector2Multiply(lhs, rhs);
   2643     return lhs;
   2644 }
   2645 
   2646 inline Vector2 operator * (const Vector2& lhs, const Matrix& rhs)
   2647 {
   2648     return Vector2Transform(lhs, rhs);
   2649 }
   2650 
   2651 inline const Vector2& operator -= (Vector2& lhs, const Matrix& rhs)
   2652 {
   2653     lhs = Vector2Transform(lhs, rhs);
   2654     return lhs;
   2655 }
   2656 
   2657 inline Vector2 operator / (const Vector2& lhs, const float& rhs)
   2658 {
   2659     return Vector2Scale(lhs, 1.0f / rhs);
   2660 }
   2661 
   2662 inline const Vector2& operator /= (Vector2& lhs, const float& rhs)
   2663 {
   2664     lhs = Vector2Scale(lhs, rhs);
   2665     return lhs;
   2666 }
   2667 
   2668 inline Vector2 operator / (const Vector2& lhs, const Vector2& rhs)
   2669 {
   2670     return Vector2Divide(lhs, rhs);
   2671 }
   2672 
   2673 inline const Vector2& operator /= (Vector2& lhs, const Vector2& rhs)
   2674 {
   2675     lhs = Vector2Divide(lhs, rhs);
   2676     return lhs;
   2677 }
   2678 
   2679 inline bool operator == (const Vector2& lhs, const Vector2& rhs)
   2680 {
   2681     return FloatEquals(lhs.x, rhs.x) && FloatEquals(lhs.y, rhs.y);
   2682 }
   2683 
   2684 inline bool operator != (const Vector2& lhs, const Vector2& rhs)
   2685 {
   2686     return !FloatEquals(lhs.x, rhs.x) || !FloatEquals(lhs.y, rhs.y);
   2687 }
   2688 
   2689 // Vector3 operators
   2690 static constexpr Vector3 Vector3Zeros = { 0, 0, 0 };
   2691 static constexpr Vector3 Vector3Ones = { 1, 1, 1 };
   2692 static constexpr Vector3 Vector3UnitX = { 1, 0, 0 };
   2693 static constexpr Vector3 Vector3UnitY = { 0, 1, 0 };
   2694 static constexpr Vector3 Vector3UnitZ = { 0, 0, 1 };
   2695 
   2696 inline Vector3 operator + (const Vector3& lhs, const Vector3& rhs)
   2697 {
   2698     return Vector3Add(lhs, rhs);
   2699 }
   2700 
   2701 inline const Vector3& operator += (Vector3& lhs, const Vector3& rhs)
   2702 {
   2703     lhs = Vector3Add(lhs, rhs);
   2704     return lhs;
   2705 }
   2706 
   2707 inline Vector3 operator - (const Vector3& lhs, const Vector3& rhs)
   2708 {
   2709     return Vector3Subtract(lhs, rhs);
   2710 }
   2711 
   2712 inline const Vector3& operator -= (Vector3& lhs, const Vector3& rhs)
   2713 {
   2714     lhs = Vector3Subtract(lhs, rhs);
   2715     return lhs;
   2716 }
   2717 
   2718 inline Vector3 operator * (const Vector3& lhs, const float& rhs)
   2719 {
   2720     return Vector3Scale(lhs, rhs);
   2721 }
   2722 
   2723 inline const Vector3& operator *= (Vector3& lhs, const float& rhs)
   2724 {
   2725     lhs = Vector3Scale(lhs, rhs);
   2726     return lhs;
   2727 }
   2728 
   2729 inline Vector3 operator * (const Vector3& lhs, const Vector3& rhs)
   2730 {
   2731     return Vector3Multiply(lhs, rhs);
   2732 }
   2733 
   2734 inline const Vector3& operator *= (Vector3& lhs, const Vector3& rhs)
   2735 {
   2736     lhs = Vector3Multiply(lhs, rhs);
   2737     return lhs;
   2738 }
   2739 
   2740 inline Vector3 operator * (const Vector3& lhs, const Matrix& rhs)
   2741 {
   2742     return Vector3Transform(lhs, rhs);
   2743 }
   2744 
   2745 inline const Vector3& operator -= (Vector3& lhs, const Matrix& rhs)
   2746 {
   2747     lhs = Vector3Transform(lhs, rhs);
   2748     return lhs;
   2749 }
   2750 
   2751 inline Vector3 operator / (const Vector3& lhs, const float& rhs)
   2752 {
   2753     return Vector3Scale(lhs, 1.0f / rhs);
   2754 }
   2755 
   2756 inline const Vector3& operator /= (Vector3& lhs, const float& rhs)
   2757 {
   2758     lhs = Vector3Scale(lhs, rhs);
   2759     return lhs;
   2760 }
   2761 
   2762 inline Vector3 operator / (const Vector3& lhs, const Vector3& rhs)
   2763 {
   2764     return Vector3Divide(lhs, rhs);
   2765 }
   2766 
   2767 inline const Vector3& operator /= (Vector3& lhs, const Vector3& rhs)
   2768 {
   2769     lhs = Vector3Divide(lhs, rhs);
   2770     return lhs;
   2771 }
   2772 
   2773 inline bool operator == (const Vector3& lhs, const Vector3& rhs)
   2774 {
   2775     return FloatEquals(lhs.x, rhs.x) && FloatEquals(lhs.y, rhs.y) && FloatEquals(lhs.z, rhs.z);
   2776 }
   2777 
   2778 inline bool operator != (const Vector3& lhs, const Vector3& rhs)
   2779 {
   2780     return !FloatEquals(lhs.x, rhs.x) || !FloatEquals(lhs.y, rhs.y) || !FloatEquals(lhs.z, rhs.z);
   2781 }
   2782 
   2783 // Vector4 operators
   2784 static constexpr Vector4 Vector4Zeros = { 0, 0, 0, 0 };
   2785 static constexpr Vector4 Vector4Ones = { 1, 1, 1, 1 };
   2786 static constexpr Vector4 Vector4UnitX = { 1, 0, 0, 0 };
   2787 static constexpr Vector4 Vector4UnitY = { 0, 1, 0, 0 };
   2788 static constexpr Vector4 Vector4UnitZ = { 0, 0, 1, 0 };
   2789 static constexpr Vector4 Vector4UnitW = { 0, 0, 0, 1 };
   2790 
   2791 inline Vector4 operator + (const Vector4& lhs, const Vector4& rhs)
   2792 {
   2793     return Vector4Add(lhs, rhs);
   2794 }
   2795 
   2796 inline const Vector4& operator += (Vector4& lhs, const Vector4& rhs)
   2797 {
   2798     lhs = Vector4Add(lhs, rhs);
   2799     return lhs;
   2800 }
   2801 
   2802 inline Vector4 operator - (const Vector4& lhs, const Vector4& rhs)
   2803 {
   2804     return Vector4Subtract(lhs, rhs);
   2805 }
   2806 
   2807 inline const Vector4& operator -= (Vector4& lhs, const Vector4& rhs)
   2808 {
   2809     lhs = Vector4Subtract(lhs, rhs);
   2810     return lhs;
   2811 }
   2812 
   2813 inline Vector4 operator * (const Vector4& lhs, const float& rhs)
   2814 {
   2815     return Vector4Scale(lhs, rhs);
   2816 }
   2817 
   2818 inline const Vector4& operator *= (Vector4& lhs, const float& rhs)
   2819 {
   2820     lhs = Vector4Scale(lhs, rhs);
   2821     return lhs;
   2822 }
   2823 
   2824 inline Vector4 operator * (const Vector4& lhs, const Vector4& rhs)
   2825 {
   2826     return Vector4Multiply(lhs, rhs);
   2827 }
   2828 
   2829 inline const Vector4& operator *= (Vector4& lhs, const Vector4& rhs)
   2830 {
   2831     lhs = Vector4Multiply(lhs, rhs);
   2832     return lhs;
   2833 }
   2834 
   2835 inline Vector4 operator / (const Vector4& lhs, const float& rhs)
   2836 {
   2837     return Vector4Scale(lhs, 1.0f / rhs);
   2838 }
   2839 
   2840 inline const Vector4& operator /= (Vector4& lhs, const float& rhs)
   2841 {
   2842     lhs = Vector4Scale(lhs, rhs);
   2843     return lhs;
   2844 }
   2845 
   2846 inline Vector4 operator / (const Vector4& lhs, const Vector4& rhs)
   2847 {
   2848     return Vector4Divide(lhs, rhs);
   2849 }
   2850 
   2851 inline const Vector4& operator /= (Vector4& lhs, const Vector4& rhs)
   2852 {
   2853     lhs = Vector4Divide(lhs, rhs);
   2854     return lhs;
   2855 }
   2856 
   2857 inline bool operator == (const Vector4& lhs, const Vector4& rhs)
   2858 {
   2859     return FloatEquals(lhs.x, rhs.x) && FloatEquals(lhs.y, rhs.y) && FloatEquals(lhs.z, rhs.z) && FloatEquals(lhs.w, rhs.w);
   2860 }
   2861 
   2862 inline bool operator != (const Vector4& lhs, const Vector4& rhs)
   2863 {
   2864     return !FloatEquals(lhs.x, rhs.x) || !FloatEquals(lhs.y, rhs.y) || !FloatEquals(lhs.z, rhs.z) || !FloatEquals(lhs.w, rhs.w);
   2865 }
   2866 
   2867 // Quaternion operators
   2868 static constexpr Quaternion QuaternionZeros = { 0, 0, 0, 0 };
   2869 static constexpr Quaternion QuaternionOnes = { 1, 1, 1, 1 };
   2870 static constexpr Quaternion QuaternionUnitX = { 0, 0, 0, 1 };
   2871 
   2872 inline Quaternion operator + (const Quaternion& lhs, const float& rhs)
   2873 {
   2874     return QuaternionAddValue(lhs, rhs);
   2875 }
   2876 
   2877 inline const Quaternion& operator += (Quaternion& lhs, const float& rhs)
   2878 {
   2879     lhs = QuaternionAddValue(lhs, rhs);
   2880     return lhs;
   2881 }
   2882 
   2883 inline Quaternion operator - (const Quaternion& lhs, const float& rhs)
   2884 {
   2885     return QuaternionSubtractValue(lhs, rhs);
   2886 }
   2887 
   2888 inline const Quaternion& operator -= (Quaternion& lhs, const float& rhs)
   2889 {
   2890     lhs = QuaternionSubtractValue(lhs, rhs);
   2891     return lhs;
   2892 }
   2893 
   2894 inline Quaternion operator * (const Quaternion& lhs, const Matrix& rhs)
   2895 {
   2896     return QuaternionTransform(lhs, rhs);
   2897 }
   2898 
   2899 inline const Quaternion& operator *= (Quaternion& lhs, const Matrix& rhs)
   2900 {
   2901     lhs = QuaternionTransform(lhs, rhs);
   2902     return lhs;
   2903 }
   2904 
   2905 // Matrix operators
   2906 inline Matrix operator + (const Matrix& lhs, const Matrix& rhs)
   2907 {
   2908     return MatrixAdd(lhs, rhs);
   2909 }
   2910 
   2911 inline const Matrix& operator += (Matrix& lhs, const Matrix& rhs)
   2912 {
   2913     lhs = MatrixAdd(lhs, rhs);
   2914     return lhs;
   2915 }
   2916 
   2917 inline Matrix operator - (const Matrix& lhs, const Matrix& rhs)
   2918 {
   2919     return MatrixSubtract(lhs, rhs);
   2920 }
   2921 
   2922 inline const Matrix& operator -= (Matrix& lhs, const Matrix& rhs)
   2923 {
   2924     lhs = MatrixSubtract(lhs, rhs);
   2925     return lhs;
   2926 }
   2927 
   2928 inline Matrix operator * (const Matrix& lhs, const Matrix& rhs)
   2929 {
   2930     return MatrixMultiply(lhs, rhs);
   2931 }
   2932 
   2933 inline const Matrix& operator *= (Matrix& lhs, const Matrix& rhs)
   2934 {
   2935     lhs = MatrixMultiply(lhs, rhs);
   2936     return lhs;
   2937 }
   2938 //-------------------------------------------------------------------------------
   2939 #endif  // C++ operators
   2940 
   2941 #endif  // RAYMATH_H