minesweeper

A minewseeper implementation to play around with Hare and Raylib
git clone https://git.tronto.net/minesweeper
Download | Log | Files | Refs | README | LICENSE

jar_xm.h (101770B)


      1 // jar_xm.h
      2 //
      3 // ORIGINAL LICENSE - FOR LIBXM:
      4 //
      5 // Author: Romain "Artefact2" Dalmaso <artefact2@gmail.com>
      6 // Contributor: Dan Spencer <dan@atomicpotato.net>
      7 // Repackaged into jar_xm.h By: Joshua Adam Reisenauer <kd7tck@gmail.com>
      8 // This program is free software. It comes without any warranty, to the
      9 // extent permitted by applicable law. You can redistribute it and/or
     10 // modify it under the terms of the Do What The Fuck You Want To Public
     11 // License, Version 2, as published by Sam Hocevar. See
     12 // http://sam.zoy.org/wtfpl/COPYING for more details.
     13 //
     14 // HISTORY:
     15 //   v0.1.0 2016-02-22  jar_xm.h - development by Joshua Reisenauer, MAR 2016
     16 //   v0.2.1 2021-03-07  m4ntr0n1c: Fix clipping noise for "bad" xm's (they will always clip), avoid clip noise and just put a ceiling)
     17 //   v0.2.2 2021-03-09  m4ntr0n1c: Add complete debug solution (raylib.h must be included)
     18 //   v0.2.3 2021-03-11  m4ntr0n1c: Fix tempo, bpm and volume on song stop / start / restart / loop
     19 //   v0.2.4 2021-03-17  m4ntr0n1c: Sanitize code for readability
     20 //   v0.2.5 2021-03-22  m4ntr0n1c: Minor adjustments
     21 //   v0.2.6 2021-04-01  m4ntr0n1c: Minor fixes and optimisation
     22 //   v0.3.0 2021-04-03  m4ntr0n1c: Addition of Stereo sample support, Linear Interpolation and Ramping now addressable options in code
     23 //   v0.3.1 2021-04-04  m4ntr0n1c: Volume effects column adjustments, sample offset handling adjustments
     24 //
     25 // USAGE:
     26 //
     27 // In ONE source file, put:
     28 //
     29 //    #define JAR_XM_IMPLEMENTATION
     30 //    #include "jar_xm.h"
     31 //
     32 // Other source files should just include jar_xm.h
     33 //
     34 // SAMPLE CODE:
     35 //
     36 // jar_xm_context_t *musicptr;
     37 // float musicBuffer[48000 / 60];
     38 // int intro_load(void)
     39 // {
     40 //     jar_xm_create_context_from_file(&musicptr, 48000, "Song.XM");
     41 //     return 1;
     42 // }
     43 // int intro_unload(void)
     44 // {
     45 //     jar_xm_free_context(musicptr);
     46 //     return 1;
     47 // }
     48 // int intro_tick(long counter)
     49 // {
     50 //     jar_xm_generate_samples(musicptr, musicBuffer, (48000 / 60) / 2);
     51 //     if(IsKeyDown(KEY_ENTER))
     52 //         return 1;
     53 //     return 0;
     54 // }
     55 //
     56 #ifndef INCLUDE_JAR_XM_H
     57 #define INCLUDE_JAR_XM_H
     58 
     59 #include <stdint.h>
     60 
     61 #define JAR_XM_DEBUG 0
     62 #define JAR_XM_DEFENSIVE 1
     63 //#define JAR_XM_RAYLIB 0 // set to 0 to disable the RayLib visualizer extension
     64 
     65 // Allow custom memory allocators
     66 #ifndef JARXM_MALLOC
     67     #define JARXM_MALLOC(sz)    malloc(sz)
     68 #endif
     69 #ifndef JARXM_FREE
     70     #define JARXM_FREE(p)       free(p)
     71 #endif
     72 
     73 //-------------------------------------------------------------------------------
     74 struct jar_xm_context_s;
     75 typedef struct jar_xm_context_s jar_xm_context_t;
     76 
     77 #ifdef __cplusplus
     78 extern "C" {
     79 #endif
     80 
     81 //** Create a XM context.
     82 // * @param moddata the contents of the module
     83 // * @param rate play rate in Hz, recommended value of 48000
     84 // * @returns 0 on success
     85 // * @returns 1 if module data is not sane
     86 // * @returns 2 if memory allocation failed
     87 // * @returns 3 unable to open input file
     88 // * @returns 4 fseek() failed
     89 // * @returns 5 fread() failed
     90 // * @returns 6 unkown error
     91 // * @deprecated This function is unsafe!
     92 // * @see jar_xm_create_context_safe()
     93 int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const char* filename);
     94 
     95 //** Create a XM context.
     96 // * @param moddata the contents of the module
     97 // * @param rate play rate in Hz, recommended value of 48000
     98 // * @returns 0 on success
     99 // * @returns 1 if module data is not sane
    100 // * @returns 2 if memory allocation failed
    101 // * @deprecated This function is unsafe!
    102 // * @see jar_xm_create_context_safe()
    103 int jar_xm_create_context(jar_xm_context_t** ctx, const char* moddata, uint32_t rate);
    104 
    105 //** Create a XM context.
    106 // * @param moddata the contents of the module
    107 // * @param moddata_length the length of the contents of the module, in bytes
    108 // * @param rate play rate in Hz, recommended value of 48000
    109 // * @returns 0 on success
    110 // * @returns 1 if module data is not sane
    111 // * @returns 2 if memory allocation failed
    112 int jar_xm_create_context_safe(jar_xm_context_t** ctx, const char* moddata, size_t moddata_length, uint32_t rate);
    113 
    114 //** Free a XM context created by jar_xm_create_context(). */
    115 void jar_xm_free_context(jar_xm_context_t* ctx);
    116 
    117 //** Play the module and put the sound samples in an output buffer.
    118 // * @param output buffer of 2*numsamples elements (A left and right value for each sample)
    119 // * @param numsamples number of samples to generate
    120 void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples);
    121 
    122 //** Play the module, resample from float to 16 bit, and put the sound samples in an output buffer.
    123 // * @param output buffer of 2*numsamples elements (A left and right value for each sample)
    124 // * @param numsamples number of samples to generate
    125 void jar_xm_generate_samples_16bit(jar_xm_context_t* ctx, short* output, size_t numsamples) {
    126     float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float));
    127     jar_xm_generate_samples(ctx, musicBuffer, numsamples);
    128 
    129     if(output){
    130         for(int x=0;x<2*numsamples;x++) output[x] = (musicBuffer[x] * 32767.0f); // scale sample to signed small int
    131     }
    132     JARXM_FREE(musicBuffer);
    133 }
    134 
    135 //** Play the module, resample from float to 8 bit, and put the sound samples in an output buffer.
    136 // * @param output buffer of 2*numsamples elements (A left and right value for each sample)
    137 // * @param numsamples number of samples to generate
    138 void jar_xm_generate_samples_8bit(jar_xm_context_t* ctx, char* output, size_t numsamples) {
    139     float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float));
    140     jar_xm_generate_samples(ctx, musicBuffer, numsamples);
    141 
    142     if(output){
    143         for(int x=0;x<2*numsamples;x++) output[x] = (musicBuffer[x] * 127.0f); // scale sample to signed 8 bit
    144     }
    145     JARXM_FREE(musicBuffer);
    146 }
    147 
    148 //** Set the maximum number of times a module can loop. After the specified number of loops, calls to jar_xm_generate_samples will only generate silence. You can control the current number of loops with jar_xm_get_loop_count().
    149 // * @param loopcnt maximum number of loops. Use 0 to loop indefinitely.
    150 void jar_xm_set_max_loop_count(jar_xm_context_t* ctx, uint8_t loopcnt);
    151 
    152 //** Get the loop count of the currently playing module. This value is 0 when the module is still playing, 1 when the module has looped once, etc.
    153 uint8_t jar_xm_get_loop_count(jar_xm_context_t* ctx);
    154 
    155 //** Mute or unmute a channel.
    156 // * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...).
    157 // * @return whether the channel was muted.
    158 bool jar_xm_mute_channel(jar_xm_context_t* ctx, uint16_t, bool);
    159 
    160 //** Mute or unmute an instrument.
    161 // * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...).
    162 // * @return whether the instrument was muted.
    163 bool jar_xm_mute_instrument(jar_xm_context_t* ctx, uint16_t, bool);
    164 
    165 //** Get the module name as a NUL-terminated string.
    166 const char* jar_xm_get_module_name(jar_xm_context_t* ctx);
    167 
    168 //** Get the tracker name as a NUL-terminated string.
    169 const char* jar_xm_get_tracker_name(jar_xm_context_t* ctx);
    170 
    171 //** Get the number of channels.
    172 uint16_t jar_xm_get_number_of_channels(jar_xm_context_t* ctx);
    173 
    174 //** Get the module length (in patterns).
    175 uint16_t jar_xm_get_module_length(jar_xm_context_t*);
    176 
    177 //** Get the number of patterns.
    178 uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t* ctx);
    179 
    180 //** Get the number of rows of a pattern.
    181 // * @note Pattern numbers go from 0 to jar_xm_get_number_of_patterns(...)-1.
    182 uint16_t jar_xm_get_number_of_rows(jar_xm_context_t* ctx, uint16_t);
    183 
    184 //** Get the number of instruments.
    185 uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t* ctx);
    186 
    187 //** Get the number of samples of an instrument.
    188 // * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...).
    189 uint16_t jar_xm_get_number_of_samples(jar_xm_context_t* ctx, uint16_t);
    190 
    191 //** Get the current module speed.
    192 // * @param bpm will receive the current BPM
    193 // * @param tempo will receive the current tempo (ticks per line)
    194 void jar_xm_get_playing_speed(jar_xm_context_t* ctx, uint16_t* bpm, uint16_t* tempo);
    195 
    196 //** Get the current position in the module being played.
    197 // * @param pattern_index if not NULL, will receive the current pattern index in the POT (pattern order table)
    198 // * @param pattern if not NULL, will receive the current pattern number
    199 // * @param row if not NULL, will receive the current row
    200 // * @param samples if not NULL, will receive the total number of
    201 // * generated samples (divide by sample rate to get seconds of generated audio)
    202 void jar_xm_get_position(jar_xm_context_t* ctx, uint8_t* pattern_index, uint8_t* pattern, uint8_t* row, uint64_t* samples);
    203 
    204 //** Get the latest time (in number of generated samples) when a particular instrument was triggered in any channel.
    205 // * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...).
    206 uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t* ctx, uint16_t);
    207 
    208 //** Get the latest time (in number of generated samples) when a particular sample was triggered in any channel.
    209 // * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...).
    210 // * @note Sample numbers go from 0 to jar_xm_get_nubmer_of_samples(...,instr)-1.
    211 uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t* ctx, uint16_t instr, uint16_t sample);
    212 
    213 //** Get the latest time (in number of generated samples) when any instrument was triggered in a given channel.
    214 // * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...).
    215 uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t* ctx, uint16_t);
    216 
    217 //** Get the number of remaining samples. Divide by 2 to get the number of individual LR data samples.
    218 // * @note This is the remaining number of samples before the loop starts module again, or halts if on last pass.
    219 // * @note This function is very slow and should only be run once, if at all.
    220 uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx);
    221 
    222 #ifdef __cplusplus
    223 }
    224 #endif
    225 //-------------------------------------------------------------------------------
    226 
    227 #ifdef JAR_XM_IMPLEMENTATION
    228 
    229 #include <math.h>
    230 #include <stdio.h>
    231 #include <stdlib.h>
    232 #include <limits.h>
    233 #include <string.h>
    234 
    235 #if JAR_XM_DEBUG            //JAR_XM_DEBUG defined as 0
    236 #include <stdio.h>
    237 #define DEBUG(fmt, ...) do {                                        \
    238         fprintf(stderr, "%s(): " fmt "\n", __func__, __VA_ARGS__);    \
    239         fflush(stderr);                                                \
    240     } while(0)
    241 #else
    242 #define DEBUG(...)
    243 #endif
    244 
    245 #if jar_xm_BIG_ENDIAN
    246 #error "Big endian platforms are not yet supported, sorry"
    247 /* Make sure the compiler stops, even if #error is ignored */
    248 extern int __fail[-1];
    249 #endif
    250 
    251 /* ----- XM constants ----- */
    252 #define SAMPLE_NAME_LENGTH 22
    253 #define INSTRUMENT_NAME_LENGTH 22
    254 #define MODULE_NAME_LENGTH 20
    255 #define TRACKER_NAME_LENGTH 20
    256 #define PATTERN_ORDER_TABLE_LENGTH 256
    257 #define NUM_NOTES 96 // from 1 to 96, where 1 = C-0
    258 #define NUM_ENVELOPE_POINTS 12 // to be verified if 12 is the max
    259 #define MAX_NUM_ROWS 256
    260 
    261 #define jar_xm_SAMPLE_RAMPING_POINTS 8
    262 
    263 /* ----- Data types ----- */
    264 
    265 enum jar_xm_waveform_type_e {
    266     jar_xm_SINE_WAVEFORM = 0,
    267     jar_xm_RAMP_DOWN_WAVEFORM = 1,
    268     jar_xm_SQUARE_WAVEFORM = 2,
    269     jar_xm_RANDOM_WAVEFORM = 3,
    270     jar_xm_RAMP_UP_WAVEFORM = 4,
    271 };
    272 typedef enum jar_xm_waveform_type_e jar_xm_waveform_type_t;
    273 
    274 enum jar_xm_loop_type_e {
    275     jar_xm_NO_LOOP,
    276     jar_xm_FORWARD_LOOP,
    277     jar_xm_PING_PONG_LOOP,
    278 };
    279 typedef enum jar_xm_loop_type_e jar_xm_loop_type_t;
    280 
    281 enum jar_xm_frequency_type_e {
    282     jar_xm_LINEAR_FREQUENCIES,
    283     jar_xm_AMIGA_FREQUENCIES,
    284 };
    285 typedef enum jar_xm_frequency_type_e jar_xm_frequency_type_t;
    286 
    287 struct jar_xm_envelope_point_s {
    288     uint16_t frame;
    289     uint16_t value;
    290 };
    291 typedef struct jar_xm_envelope_point_s jar_xm_envelope_point_t;
    292 
    293 struct jar_xm_envelope_s {
    294     jar_xm_envelope_point_t points[NUM_ENVELOPE_POINTS];
    295     uint8_t num_points;
    296     uint8_t sustain_point;
    297     uint8_t loop_start_point;
    298     uint8_t loop_end_point;
    299     bool enabled;
    300     bool sustain_enabled;
    301     bool loop_enabled;
    302 };
    303 typedef struct jar_xm_envelope_s jar_xm_envelope_t;
    304 
    305 struct jar_xm_sample_s {
    306     char name[SAMPLE_NAME_LENGTH + 1];
    307     int8_t bits; /* Either 8 or 16 */
    308     int8_t stereo;
    309     uint32_t length;
    310     uint32_t loop_start;
    311     uint32_t loop_length;
    312     uint32_t loop_end;
    313     float volume;
    314     int8_t finetune;
    315     jar_xm_loop_type_t loop_type;
    316     float panning;
    317     int8_t relative_note;
    318     uint64_t latest_trigger;
    319 
    320     float* data;
    321  };
    322  typedef struct jar_xm_sample_s jar_xm_sample_t;
    323 
    324  struct jar_xm_instrument_s {
    325      char name[INSTRUMENT_NAME_LENGTH + 1];
    326      uint16_t num_samples;
    327      uint8_t sample_of_notes[NUM_NOTES];
    328      jar_xm_envelope_t volume_envelope;
    329      jar_xm_envelope_t panning_envelope;
    330      jar_xm_waveform_type_t vibrato_type;
    331      uint8_t vibrato_sweep;
    332      uint8_t vibrato_depth;
    333      uint8_t vibrato_rate;
    334      uint16_t volume_fadeout;
    335      uint64_t latest_trigger;
    336      bool muted;
    337 
    338      jar_xm_sample_t* samples;
    339  };
    340  typedef struct jar_xm_instrument_s jar_xm_instrument_t;
    341 
    342  struct jar_xm_pattern_slot_s {
    343      uint8_t note; /* 1-96, 97 = Key Off note */
    344      uint8_t instrument; /* 1-128 */
    345      uint8_t volume_column;
    346      uint8_t effect_type;
    347      uint8_t effect_param;
    348  };
    349  typedef struct jar_xm_pattern_slot_s jar_xm_pattern_slot_t;
    350 
    351  struct jar_xm_pattern_s {
    352      uint16_t num_rows;
    353      jar_xm_pattern_slot_t* slots; /* Array of size num_rows * num_channels */
    354  };
    355  typedef struct jar_xm_pattern_s jar_xm_pattern_t;
    356 
    357  struct jar_xm_module_s {
    358      char name[MODULE_NAME_LENGTH + 1];
    359      char trackername[TRACKER_NAME_LENGTH + 1];
    360      uint16_t length;
    361      uint16_t restart_position;
    362      uint16_t num_channels;
    363      uint16_t num_patterns;
    364      uint16_t num_instruments;
    365      uint16_t linear_interpolation;
    366      uint16_t ramping;
    367      jar_xm_frequency_type_t frequency_type;
    368      uint8_t pattern_table[PATTERN_ORDER_TABLE_LENGTH];
    369 
    370      jar_xm_pattern_t* patterns;
    371      jar_xm_instrument_t* instruments; /* Instrument 1 has index 0, instrument 2 has index 1, etc. */
    372  };
    373  typedef struct jar_xm_module_s jar_xm_module_t;
    374 
    375  struct jar_xm_channel_context_s {
    376      float note;
    377      float orig_note; /* The original note before effect modifications, as read in the pattern. */
    378      jar_xm_instrument_t* instrument; /* Could be NULL */
    379      jar_xm_sample_t* sample; /* Could be NULL */
    380      jar_xm_pattern_slot_t* current;
    381 
    382      float sample_position;
    383      float period;
    384      float frequency;
    385      float step;
    386      bool ping; /* For ping-pong samples: true is -->, false is <-- */
    387 
    388      float volume; /* Ideally between 0 (muted) and 1 (loudest) */
    389      float panning; /* Between 0 (left) and 1 (right); 0.5 is centered */
    390 
    391      uint16_t autovibrato_ticks;
    392 
    393      bool sustained;
    394      float fadeout_volume;
    395      float volume_envelope_volume;
    396      float panning_envelope_panning;
    397      uint16_t volume_envelope_frame_count;
    398      uint16_t panning_envelope_frame_count;
    399 
    400      float autovibrato_note_offset;
    401 
    402      bool arp_in_progress;
    403      uint8_t arp_note_offset;
    404      uint8_t volume_slide_param;
    405      uint8_t fine_volume_slide_param;
    406      uint8_t global_volume_slide_param;
    407      uint8_t panning_slide_param;
    408      uint8_t portamento_up_param;
    409      uint8_t portamento_down_param;
    410      uint8_t fine_portamento_up_param;
    411      uint8_t fine_portamento_down_param;
    412      uint8_t extra_fine_portamento_up_param;
    413      uint8_t extra_fine_portamento_down_param;
    414      uint8_t tone_portamento_param;
    415      float tone_portamento_target_period;
    416      uint8_t multi_retrig_param;
    417      uint8_t note_delay_param;
    418      uint8_t pattern_loop_origin; /* Where to restart a E6y loop */
    419      uint8_t pattern_loop_count; /* How many loop passes have been done */
    420      bool vibrato_in_progress;
    421      jar_xm_waveform_type_t vibrato_waveform;
    422      bool vibrato_waveform_retrigger; /* True if a new note retriggers the waveform */
    423      uint8_t vibrato_param;
    424      uint16_t vibrato_ticks; /* Position in the waveform */
    425      float vibrato_note_offset;
    426      jar_xm_waveform_type_t tremolo_waveform;
    427      bool tremolo_waveform_retrigger;
    428      uint8_t tremolo_param;
    429      uint8_t tremolo_ticks;
    430      float tremolo_volume;
    431      uint8_t tremor_param;
    432      bool tremor_on;
    433 
    434      uint64_t latest_trigger;
    435      bool muted;
    436 
    437      //* These values are updated at the end of each tick, to save a couple of float operations on every generated sample.
    438      float target_panning;
    439      float target_volume;
    440 
    441      unsigned long frame_count;
    442      float end_of_previous_sample_left[jar_xm_SAMPLE_RAMPING_POINTS];
    443      float end_of_previous_sample_right[jar_xm_SAMPLE_RAMPING_POINTS];
    444      float curr_left;
    445      float curr_right;
    446 
    447      float actual_panning;
    448      float actual_volume;
    449  };
    450  typedef struct jar_xm_channel_context_s jar_xm_channel_context_t;
    451 
    452  struct jar_xm_context_s {
    453      void* allocated_memory;
    454      jar_xm_module_t module;
    455      uint32_t rate;
    456 
    457      uint16_t default_tempo; // Number of ticks per row
    458      uint16_t default_bpm;
    459      float default_global_volume;
    460 
    461      uint16_t tempo; // Number of ticks per row
    462      uint16_t bpm;
    463      float global_volume;
    464 
    465      float volume_ramp; /* How much is a channel final volume allowed to change per sample; this is used to avoid abrubt volume changes which manifest as "clicks" in the generated sound. */
    466      float panning_ramp; /* Same for panning. */
    467 
    468      uint8_t current_table_index;
    469      uint8_t current_row;
    470      uint16_t current_tick; /* Can go below 255, with high tempo and a pattern delay */
    471      float remaining_samples_in_tick;
    472      uint64_t generated_samples;
    473 
    474      bool position_jump;
    475      bool pattern_break;
    476      uint8_t jump_dest;
    477      uint8_t jump_row;
    478 
    479      uint16_t extra_ticks; /* Extra ticks to be played before going to the next row - Used for EEy effect */
    480 
    481      uint8_t* row_loop_count; /* Array of size MAX_NUM_ROWS * module_length */
    482      uint8_t loop_count;
    483      uint8_t max_loop_count;
    484 
    485      jar_xm_channel_context_t* channels;
    486 };
    487 
    488 #if JAR_XM_DEFENSIVE
    489 
    490 //** Check the module data for errors/inconsistencies.
    491 // * @returns 0 if everything looks OK. Module should be safe to load.
    492 int jar_xm_check_sanity_preload(const char*, size_t);
    493 
    494 //** Check a loaded module for errors/inconsistencies.
    495 // * @returns 0 if everything looks OK.
    496 int jar_xm_check_sanity_postload(jar_xm_context_t*);
    497 
    498 #endif
    499 
    500 //** Get the number of bytes needed to store the module data in a dynamically allocated blank context.
    501 // * Things that are dynamically allocated:
    502 // * - sample data
    503 // * - sample structures in instruments
    504 // * - pattern data
    505 // * - row loop count arrays
    506 // * - pattern structures in module
    507 // * - instrument structures in module
    508 // * - channel contexts
    509 // * - context structure itself
    510 // * @returns 0 if everything looks OK.
    511 size_t jar_xm_get_memory_needed_for_context(const char*, size_t);
    512 
    513 //** Populate the context from module data.
    514 // * @returns pointer to the memory pool
    515 char* jar_xm_load_module(jar_xm_context_t*, const char*, size_t, char*);
    516 
    517 int jar_xm_create_context(jar_xm_context_t** ctxp, const char* moddata, uint32_t rate) {
    518     return jar_xm_create_context_safe(ctxp, moddata, SIZE_MAX, rate);
    519 }
    520 
    521 #define ALIGN(x, b) (((x) + ((b) - 1)) & ~((b) - 1))
    522 #define ALIGN_PTR(x, b) (void*)(((uintptr_t)(x) + ((b) - 1)) & ~((b) - 1))
    523 int jar_xm_create_context_safe(jar_xm_context_t** ctxp, const char* moddata, size_t moddata_length, uint32_t rate) {
    524 #if JAR_XM_DEFENSIVE
    525     int ret;
    526 #endif
    527     size_t bytes_needed;
    528     char* mempool;
    529     jar_xm_context_t* ctx;
    530 
    531 #if JAR_XM_DEFENSIVE
    532     if((ret = jar_xm_check_sanity_preload(moddata, moddata_length))) {
    533         DEBUG("jar_xm_check_sanity_preload() returned %i, module is not safe to load", ret);
    534         return 1;
    535     }
    536 #endif
    537 
    538     bytes_needed = jar_xm_get_memory_needed_for_context(moddata, moddata_length);
    539     mempool = JARXM_MALLOC(bytes_needed);
    540     if(mempool == NULL && bytes_needed > 0) { /* JARXM_MALLOC() failed, trouble ahead */
    541         DEBUG("call to JARXM_MALLOC() failed, returned %p", (void*)mempool);
    542         return 2;
    543     }
    544 
    545     /* Initialize most of the fields to 0, 0.f, NULL or false depending on type */
    546     memset(mempool, 0, bytes_needed);
    547 
    548     ctx = (*ctxp = (jar_xm_context_t *)mempool);
    549     ctx->allocated_memory = mempool; /* Keep original pointer for JARXM_FREE() */
    550     mempool += sizeof(jar_xm_context_t);
    551 
    552     ctx->rate = rate;
    553     mempool = jar_xm_load_module(ctx, moddata, moddata_length, mempool);
    554     mempool = ALIGN_PTR(mempool, 16);
    555 
    556     ctx->channels = (jar_xm_channel_context_t*)mempool;
    557     mempool += ctx->module.num_channels * sizeof(jar_xm_channel_context_t);
    558     mempool = ALIGN_PTR(mempool, 16);
    559 
    560     ctx->default_global_volume = 1.f;
    561     ctx->global_volume = ctx->default_global_volume;
    562 
    563     ctx->volume_ramp = (1.f / 128.f);
    564     ctx->panning_ramp = (1.f / 128.f);
    565 
    566     for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
    567         jar_xm_channel_context_t *ch = ctx->channels + i;
    568         ch->ping = true;
    569         ch->vibrato_waveform = jar_xm_SINE_WAVEFORM;
    570         ch->vibrato_waveform_retrigger = true;
    571         ch->tremolo_waveform = jar_xm_SINE_WAVEFORM;
    572         ch->tremolo_waveform_retrigger = true;
    573         ch->volume = ch->volume_envelope_volume = ch->fadeout_volume = 1.0f;
    574         ch->panning = ch->panning_envelope_panning = .5f;
    575         ch->actual_volume = .0f;
    576         ch->actual_panning = .5f;
    577     }
    578 
    579     mempool = ALIGN_PTR(mempool, 16);
    580     ctx->row_loop_count = (uint8_t *)mempool;
    581     mempool += MAX_NUM_ROWS * sizeof(uint8_t);
    582 
    583 #if JAR_XM_DEFENSIVE
    584     if((ret = jar_xm_check_sanity_postload(ctx))) {   DEBUG("jar_xm_check_sanity_postload() returned %i, module is not safe to play", ret);
    585         jar_xm_free_context(ctx);
    586         return 1;
    587     }
    588 #endif
    589 
    590     return 0;
    591 }
    592 
    593 void jar_xm_free_context(jar_xm_context_t *ctx) {
    594     if (ctx != NULL) {   JARXM_FREE(ctx->allocated_memory); }
    595 }
    596 
    597 void jar_xm_set_max_loop_count(jar_xm_context_t *ctx, uint8_t loopcnt) {
    598     ctx->max_loop_count = loopcnt;
    599 }
    600 
    601 uint8_t jar_xm_get_loop_count(jar_xm_context_t *ctx) {
    602     return ctx->loop_count;
    603 }
    604 
    605 bool jar_xm_mute_channel(jar_xm_context_t *ctx, uint16_t channel, bool mute) {
    606     bool old = ctx->channels[channel - 1].muted;
    607     ctx->channels[channel - 1].muted = mute;
    608     return old;
    609 }
    610 
    611 bool jar_xm_mute_instrument(jar_xm_context_t *ctx, uint16_t instr, bool mute) {
    612     bool old = ctx->module.instruments[instr - 1].muted;
    613     ctx->module.instruments[instr - 1].muted = mute;
    614     return old;
    615 }
    616 
    617 const char* jar_xm_get_module_name(jar_xm_context_t *ctx) {
    618     return ctx->module.name;
    619 }
    620 
    621 const char* jar_xm_get_tracker_name(jar_xm_context_t *ctx) {
    622     return ctx->module.trackername;
    623 }
    624 
    625 uint16_t jar_xm_get_number_of_channels(jar_xm_context_t *ctx) {
    626     return ctx->module.num_channels;
    627 }
    628 
    629 uint16_t jar_xm_get_module_length(jar_xm_context_t *ctx) {
    630     return ctx->module.length;
    631 }
    632 
    633 uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t *ctx) {
    634     return ctx->module.num_patterns;
    635 }
    636 
    637 uint16_t jar_xm_get_number_of_rows(jar_xm_context_t *ctx, uint16_t pattern) {
    638     return ctx->module.patterns[pattern].num_rows;
    639 }
    640 
    641 uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t *ctx) {
    642     return ctx->module.num_instruments;
    643 }
    644 
    645 uint16_t jar_xm_get_number_of_samples(jar_xm_context_t *ctx, uint16_t instrument) {
    646     return ctx->module.instruments[instrument - 1].num_samples;
    647 }
    648 
    649 void jar_xm_get_playing_speed(jar_xm_context_t *ctx, uint16_t *bpm, uint16_t *tempo) {
    650     if(bpm) *bpm = ctx->bpm;
    651     if(tempo) *tempo = ctx->tempo;
    652 }
    653 
    654 void jar_xm_get_position(jar_xm_context_t *ctx, uint8_t *pattern_index, uint8_t *pattern, uint8_t *row, uint64_t *samples) {
    655     if(pattern_index) *pattern_index = ctx->current_table_index;
    656     if(pattern) *pattern = ctx->module.pattern_table[ctx->current_table_index];
    657     if(row) *row = ctx->current_row;
    658     if(samples) *samples = ctx->generated_samples;
    659 }
    660 
    661 uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t *ctx, uint16_t instr) {
    662     return ctx->module.instruments[instr - 1].latest_trigger;
    663 }
    664 
    665 uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t *ctx, uint16_t instr, uint16_t sample) {
    666     return ctx->module.instruments[instr - 1].samples[sample].latest_trigger;
    667 }
    668 
    669 uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t *ctx, uint16_t chn) {
    670     return ctx->channels[chn - 1].latest_trigger;
    671 }
    672 
    673 //* .xm files are little-endian. (XXX: Are they really?)
    674 
    675 //* Bound reader macros.
    676 //* If we attempt to read the buffer out-of-bounds, pretend that the buffer is infinitely padded with zeroes.
    677 #define READ_U8(offset) (((offset) < moddata_length) ? (*(uint8_t*)(moddata + (offset))) : 0)
    678 #define READ_U16(offset) ((uint16_t)READ_U8(offset) | ((uint16_t)READ_U8((offset) + 1) << 8))
    679 #define READ_U32(offset) ((uint32_t)READ_U16(offset) | ((uint32_t)READ_U16((offset) + 2) << 16))
    680 #define READ_MEMCPY(ptr, offset, length) memcpy_pad(ptr, length, moddata, moddata_length, offset)
    681 
    682 static void memcpy_pad(void *dst, size_t dst_len, const void *src, size_t src_len, size_t offset) {
    683     uint8_t *dst_c = dst;
    684     const uint8_t *src_c = src;
    685 
    686     /* how many bytes can be copied without overrunning `src` */
    687     size_t copy_bytes = (src_len >= offset) ? (src_len - offset) : 0;
    688     copy_bytes = copy_bytes > dst_len ? dst_len : copy_bytes;
    689 
    690     memcpy(dst_c, src_c + offset, copy_bytes);
    691     /* padded bytes */
    692     memset(dst_c + copy_bytes, 0, dst_len - copy_bytes);
    693 }
    694 
    695 #if JAR_XM_DEFENSIVE
    696 
    697 int jar_xm_check_sanity_preload(const char* module, size_t module_length) {
    698     if(module_length < 60) { return 4; }
    699     if(memcmp("Extended Module: ", module, 17) != 0) { return 1; }
    700     if(module[37] != 0x1A) { return 2; }
    701     if(module[59] != 0x01 || module[58] != 0x04) { return 3; }  /* Not XM 1.04 */
    702     return 0;
    703 }
    704 
    705 int jar_xm_check_sanity_postload(jar_xm_context_t* ctx) {
    706     /* Check the POT */
    707     for(uint8_t i = 0; i < ctx->module.length; ++i) {
    708         if(ctx->module.pattern_table[i] >= ctx->module.num_patterns) {
    709             if(i+1 == ctx->module.length && ctx->module.length > 1) {
    710                 DEBUG("trimming invalid POT at pos %X", i);
    711                 --ctx->module.length;
    712             } else {
    713                 DEBUG("module has invalid POT, pos %X references nonexistent pattern %X", i, ctx->module.pattern_table[i]);
    714                 return 1;
    715             }
    716         }
    717     }
    718 
    719     return 0;
    720 }
    721 
    722 #endif
    723 
    724 size_t jar_xm_get_memory_needed_for_context(const char* moddata, size_t moddata_length) {
    725     size_t memory_needed = 0;
    726     size_t offset = 60; /* 60 = Skip the first header */
    727     uint16_t num_channels;
    728     uint16_t num_patterns;
    729     uint16_t num_instruments;
    730 
    731     /* Read the module header */
    732     num_channels = READ_U16(offset + 8);
    733     num_patterns = READ_U16(offset + 10);
    734     memory_needed += num_patterns * sizeof(jar_xm_pattern_t);
    735     memory_needed  = ALIGN(memory_needed, 16);
    736     num_instruments = READ_U16(offset + 12);
    737     memory_needed += num_instruments * sizeof(jar_xm_instrument_t);
    738     memory_needed  = ALIGN(memory_needed, 16);
    739     memory_needed += MAX_NUM_ROWS * READ_U16(offset + 4) * sizeof(uint8_t); /* Module length */
    740 
    741     offset += READ_U32(offset); /* Header size */
    742 
    743     /* Read pattern headers */
    744     for(uint16_t i = 0; i < num_patterns; ++i) {
    745         uint16_t num_rows;
    746         num_rows = READ_U16(offset + 5);
    747         memory_needed += num_rows * num_channels * sizeof(jar_xm_pattern_slot_t);
    748         offset += READ_U32(offset) + READ_U16(offset + 7); /* Pattern header length + packed pattern data size */
    749     }
    750     memory_needed  = ALIGN(memory_needed, 16);
    751 
    752     /* Read instrument headers */
    753     for(uint16_t i = 0; i < num_instruments; ++i) {
    754         uint16_t num_samples;
    755         uint32_t sample_header_size = 0;
    756         uint32_t sample_size_aggregate = 0;
    757         num_samples = READ_U16(offset + 27);
    758         memory_needed += num_samples * sizeof(jar_xm_sample_t);
    759         if(num_samples > 0) { sample_header_size = READ_U32(offset + 29); }
    760 
    761         offset += READ_U32(offset);  /* Instrument header size */
    762         for(uint16_t j = 0; j < num_samples; ++j) {
    763             uint32_t sample_size;
    764             uint8_t flags;
    765             sample_size = READ_U32(offset);
    766             flags = READ_U8(offset + 14);
    767             sample_size_aggregate += sample_size;
    768 
    769             if(flags & (1 << 4)) {  /* 16 bit sample */
    770                 memory_needed += sample_size * (sizeof(float) >> 1);
    771             } else {  /* 8 bit sample */
    772                 memory_needed += sample_size * sizeof(float);
    773             }
    774             offset += sample_header_size;
    775         }
    776         offset += sample_size_aggregate;
    777     }
    778 
    779     memory_needed += num_channels * sizeof(jar_xm_channel_context_t);
    780     memory_needed += sizeof(jar_xm_context_t);
    781     return memory_needed;
    782 }
    783 
    784 char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t moddata_length, char* mempool) {
    785     size_t offset = 0;
    786     jar_xm_module_t* mod = &(ctx->module);
    787 
    788     /* Read XM header */
    789     READ_MEMCPY(mod->name, offset + 17, MODULE_NAME_LENGTH);
    790     READ_MEMCPY(mod->trackername, offset + 38, TRACKER_NAME_LENGTH);
    791     offset += 60;
    792 
    793     /* Read module header */
    794     uint32_t header_size = READ_U32(offset);
    795     mod->length = READ_U16(offset + 4);
    796     mod->restart_position = READ_U16(offset + 6);
    797     mod->num_channels = READ_U16(offset + 8);
    798     mod->num_patterns = READ_U16(offset + 10);
    799     mod->num_instruments = READ_U16(offset + 12);
    800     mod->patterns = (jar_xm_pattern_t*)mempool;
    801     mod->linear_interpolation = 1; // Linear interpolation can be set after loading
    802     mod->ramping = 1; // ramping can be set after loading
    803     mempool += mod->num_patterns * sizeof(jar_xm_pattern_t);
    804     mempool = ALIGN_PTR(mempool, 16);
    805     mod->instruments = (jar_xm_instrument_t*)mempool;
    806     mempool += mod->num_instruments * sizeof(jar_xm_instrument_t);
    807     mempool = ALIGN_PTR(mempool, 16);
    808     uint16_t flags = READ_U32(offset + 14);
    809     mod->frequency_type = (flags & (1 << 0)) ? jar_xm_LINEAR_FREQUENCIES : jar_xm_AMIGA_FREQUENCIES;
    810     ctx->default_tempo = READ_U16(offset + 16);
    811     ctx->default_bpm = READ_U16(offset + 18);
    812     ctx->tempo =ctx->default_tempo;
    813     ctx->bpm = ctx->default_bpm;
    814 
    815     READ_MEMCPY(mod->pattern_table, offset + 20, PATTERN_ORDER_TABLE_LENGTH);
    816     offset += header_size;
    817 
    818     /* Read patterns */
    819     for(uint16_t i = 0; i < mod->num_patterns; ++i) {
    820         uint16_t packed_patterndata_size = READ_U16(offset + 7);
    821         jar_xm_pattern_t* pat = mod->patterns + i;
    822         pat->num_rows = READ_U16(offset + 5);
    823         pat->slots = (jar_xm_pattern_slot_t*)mempool;
    824         mempool += mod->num_channels * pat->num_rows * sizeof(jar_xm_pattern_slot_t);
    825         offset += READ_U32(offset); /* Pattern header length */
    826 
    827         if(packed_patterndata_size == 0) {    /* No pattern data is present */
    828             memset(pat->slots, 0, sizeof(jar_xm_pattern_slot_t) * pat->num_rows * mod->num_channels);
    829         } else {
    830             /* This isn't your typical for loop */
    831             for(uint16_t j = 0, k = 0; j < packed_patterndata_size; ++k) {
    832                 uint8_t note = READ_U8(offset + j);
    833                 jar_xm_pattern_slot_t* slot = pat->slots + k;
    834                 if(note & (1 << 7)) {
    835                     /* MSB is set, this is a compressed packet */
    836                     ++j;
    837                     if(note & (1 << 0)) {    /* Note follows */
    838                         slot->note = READ_U8(offset + j);
    839                         ++j;
    840                     } else {
    841                         slot->note = 0;
    842                     }
    843                     if(note & (1 << 1)) {    /* Instrument follows */
    844                         slot->instrument = READ_U8(offset + j);
    845                         ++j;
    846                     } else {
    847                         slot->instrument = 0;
    848                     }
    849                     if(note & (1 << 2)) {    /* Volume column follows */
    850                         slot->volume_column = READ_U8(offset + j);
    851                         ++j;
    852                     } else {
    853                         slot->volume_column = 0;
    854                     }
    855                     if(note & (1 << 3)) {    /* Effect follows */
    856                         slot->effect_type = READ_U8(offset + j);
    857                         ++j;
    858                     } else {
    859                         slot->effect_type = 0;
    860                     }
    861                     if(note & (1 << 4)) {    /* Effect parameter follows */
    862                         slot->effect_param = READ_U8(offset + j);
    863                         ++j;
    864                     } else {
    865                         slot->effect_param = 0;
    866                     }
    867                 } else {    /* Uncompressed packet */
    868                     slot->note = note;
    869                     slot->instrument = READ_U8(offset + j + 1);
    870                     slot->volume_column = READ_U8(offset + j + 2);
    871                     slot->effect_type = READ_U8(offset + j + 3);
    872                     slot->effect_param = READ_U8(offset + j + 4);
    873                     j += 5;
    874                 }
    875             }
    876         }
    877 
    878         offset += packed_patterndata_size;
    879     }
    880     mempool = ALIGN_PTR(mempool, 16);
    881 
    882     /* Read instruments */
    883     for(uint16_t i = 0; i < ctx->module.num_instruments; ++i) {
    884         uint32_t sample_header_size = 0;
    885         jar_xm_instrument_t* instr = mod->instruments + i;
    886 
    887         READ_MEMCPY(instr->name, offset + 4, INSTRUMENT_NAME_LENGTH);
    888         instr->num_samples = READ_U16(offset + 27);
    889 
    890         if(instr->num_samples > 0) {
    891             /* Read extra header properties */
    892             sample_header_size = READ_U32(offset + 29);
    893             READ_MEMCPY(instr->sample_of_notes, offset + 33, NUM_NOTES);
    894 
    895             instr->volume_envelope.num_points = READ_U8(offset + 225);
    896             instr->panning_envelope.num_points = READ_U8(offset + 226);
    897 
    898             for(uint8_t j = 0; j < instr->volume_envelope.num_points; ++j) {
    899                 instr->volume_envelope.points[j].frame = READ_U16(offset + 129 + 4 * j);
    900                 instr->volume_envelope.points[j].value = READ_U16(offset + 129 + 4 * j + 2);
    901             }
    902 
    903             for(uint8_t j = 0; j < instr->panning_envelope.num_points; ++j) {
    904                 instr->panning_envelope.points[j].frame = READ_U16(offset + 177 + 4 * j);
    905                 instr->panning_envelope.points[j].value = READ_U16(offset + 177 + 4 * j + 2);
    906             }
    907 
    908             instr->volume_envelope.sustain_point = READ_U8(offset + 227);
    909             instr->volume_envelope.loop_start_point = READ_U8(offset + 228);
    910             instr->volume_envelope.loop_end_point = READ_U8(offset + 229);
    911             instr->panning_envelope.sustain_point = READ_U8(offset + 230);
    912             instr->panning_envelope.loop_start_point = READ_U8(offset + 231);
    913             instr->panning_envelope.loop_end_point = READ_U8(offset + 232);
    914 
    915             uint8_t flags = READ_U8(offset + 233);
    916             instr->volume_envelope.enabled = flags & (1 << 0);
    917             instr->volume_envelope.sustain_enabled = flags & (1 << 1);
    918             instr->volume_envelope.loop_enabled = flags & (1 << 2);
    919 
    920             flags = READ_U8(offset + 234);
    921             instr->panning_envelope.enabled = flags & (1 << 0);
    922             instr->panning_envelope.sustain_enabled = flags & (1 << 1);
    923             instr->panning_envelope.loop_enabled = flags & (1 << 2);
    924             instr->vibrato_type = READ_U8(offset + 235);
    925             if(instr->vibrato_type == 2) {
    926                 instr->vibrato_type = 1;
    927             } else if(instr->vibrato_type == 1) {
    928                 instr->vibrato_type = 2;
    929             }
    930             instr->vibrato_sweep = READ_U8(offset + 236);
    931             instr->vibrato_depth = READ_U8(offset + 237);
    932             instr->vibrato_rate = READ_U8(offset + 238);
    933             instr->volume_fadeout = READ_U16(offset + 239);
    934             instr->samples = (jar_xm_sample_t*)mempool;
    935             mempool += instr->num_samples * sizeof(jar_xm_sample_t);
    936         } else {
    937             instr->samples = NULL;
    938         }
    939 
    940         /* Instrument header size */
    941         offset += READ_U32(offset);
    942 
    943         for(int j = 0; j < instr->num_samples; ++j) {
    944             /* Read sample header */
    945             jar_xm_sample_t* sample = instr->samples + j;
    946 
    947             sample->length = READ_U32(offset);
    948             sample->loop_start = READ_U32(offset + 4);
    949             sample->loop_length = READ_U32(offset + 8);
    950             sample->loop_end = sample->loop_start + sample->loop_length;
    951             sample->volume = (float)(READ_U8(offset + 12) << 2) / 256.f;
    952             if (sample->volume > 1.0f) {sample->volume = 1.f;};
    953             sample->finetune = (int8_t)READ_U8(offset + 13);
    954 
    955             uint8_t flags = READ_U8(offset + 14);
    956             switch (flags & 3) {
    957             case 2:
    958             case 3:
    959                 sample->loop_type = jar_xm_PING_PONG_LOOP;
    960             case 1:
    961                 sample->loop_type = jar_xm_FORWARD_LOOP;
    962                 break;
    963             default:
    964                 sample->loop_type = jar_xm_NO_LOOP;
    965                 break;
    966             };
    967             sample->bits = (flags & 0x10) ? 16 : 8;
    968             sample->stereo = (flags & 0x20) ? 1 : 0;
    969             sample->panning = (float)READ_U8(offset + 15) / 255.f;
    970             sample->relative_note = (int8_t)READ_U8(offset + 16);
    971             READ_MEMCPY(sample->name, 18, SAMPLE_NAME_LENGTH);
    972             sample->data = (float*)mempool;
    973             if(sample->bits == 16) {
    974                 /* 16 bit sample */
    975                 mempool += sample->length * (sizeof(float) >> 1);
    976                 sample->loop_start >>= 1;
    977                 sample->loop_length >>= 1;
    978                 sample->loop_end >>= 1;
    979                 sample->length >>= 1;
    980             } else {
    981                 /* 8 bit sample */
    982                 mempool += sample->length * sizeof(float);
    983             }
    984             // Adjust loop points to reflect half of the reported length (stereo)
    985             if (sample->stereo && sample->loop_type != jar_xm_NO_LOOP) {
    986                 div_t lstart = div(READ_U32(offset + 4), 2);
    987                 sample->loop_start = lstart.quot;
    988                 div_t llength = div(READ_U32(offset + 8), 2);
    989                 sample->loop_length = llength.quot;
    990                 sample->loop_end = sample->loop_start + sample->loop_length;
    991             };
    992 
    993             offset += sample_header_size;
    994         }
    995 
    996         // Read all samples and convert them to float values
    997         for(int j = 0; j < instr->num_samples; ++j) {
    998             /* Read sample data */
    999             jar_xm_sample_t* sample = instr->samples + j;
   1000             int length = sample->length;
   1001             if (sample->stereo) {
   1002                 // Since it is stereo, we cut the sample in half (treated as single channel)
   1003                 div_t result = div(sample->length, 2);
   1004                 if(sample->bits == 16) {
   1005                     int16_t v = 0;
   1006                     for(int k = 0; k < length; ++k) {
   1007                         if (k == result.quot) { v = 0;};
   1008                         v = v + (int16_t)READ_U16(offset + (k << 1));
   1009                         sample->data[k] = (float) v / 32768.f ;//* sign;
   1010                         if(sample->data[k] < -1.0)  {sample->data[k] = -1.0;}  else if(sample->data[k] > 1.0)  {sample->data[k] = 1.0;};
   1011                     }
   1012                     offset += sample->length << 1;
   1013                 } else {
   1014                     int8_t v = 0;
   1015                     for(int k = 0; k < length; ++k) {
   1016                         if (k == result.quot) { v = 0;};
   1017                         v = v + (int8_t)READ_U8(offset + k);
   1018                         sample->data[k] = (float)v  / 128.f ;//* sign;
   1019                         if(sample->data[k] < -1.0)  {sample->data[k] = -1.0;}  else if(sample->data[k] > 1.0)  {sample->data[k] = 1.0;};
   1020                     }
   1021                     offset += sample->length;
   1022                 };
   1023                 sample->length = result.quot;
   1024             } else {
   1025                 if(sample->bits == 16) {
   1026                     int16_t v = 0;
   1027                     for(int k = 0; k < length; ++k) {
   1028                         v = v + (int16_t)READ_U16(offset + (k << 1));
   1029                         sample->data[k] = (float) v / 32768.f ;//* sign;
   1030                         if(sample->data[k] < -1.0)  {sample->data[k] = -1.0;}  else if(sample->data[k] > 1.0)  {sample->data[k] = 1.0;};
   1031                     }
   1032                     offset += sample->length << 1;
   1033                 } else {
   1034                     int8_t v = 0;
   1035                     for(int k = 0; k < length; ++k) {
   1036                         v = v + (int8_t)READ_U8(offset + k);
   1037                         sample->data[k] = (float)v  / 128.f ;//* sign;
   1038                         if(sample->data[k] < -1.0)  {sample->data[k] = -1.0;}  else if(sample->data[k] > 1.0)  {sample->data[k] = 1.0;};
   1039                     }
   1040                     offset += sample->length;
   1041                 }
   1042             }
   1043         };
   1044     };
   1045     return mempool;
   1046 };
   1047 
   1048 //-------------------------------------------------------------------------------
   1049 //THE FOLLOWING IS FOR PLAYING
   1050 static float jar_xm_waveform(jar_xm_waveform_type_t, uint8_t);
   1051 static void jar_xm_autovibrato(jar_xm_context_t*, jar_xm_channel_context_t*);
   1052 static void jar_xm_vibrato(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t);
   1053 static void jar_xm_tremolo(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t);
   1054 static void jar_xm_arpeggio(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t);
   1055 static void jar_xm_tone_portamento(jar_xm_context_t*, jar_xm_channel_context_t*);
   1056 static void jar_xm_pitch_slide(jar_xm_context_t*, jar_xm_channel_context_t*, float);
   1057 static void jar_xm_panning_slide(jar_xm_channel_context_t*, uint8_t);
   1058 static void jar_xm_volume_slide(jar_xm_channel_context_t*, uint8_t);
   1059 
   1060 static float jar_xm_envelope_lerp(jar_xm_envelope_point_t*, jar_xm_envelope_point_t*, uint16_t);
   1061 static void jar_xm_envelope_tick(jar_xm_channel_context_t*, jar_xm_envelope_t*, uint16_t*, float*);
   1062 static void jar_xm_envelopes(jar_xm_channel_context_t*);
   1063 
   1064 static float jar_xm_linear_period(float);
   1065 static float jar_xm_linear_frequency(float);
   1066 static float jar_xm_amiga_period(float);
   1067 static float jar_xm_amiga_frequency(float);
   1068 static float jar_xm_period(jar_xm_context_t*, float);
   1069 static float jar_xm_frequency(jar_xm_context_t*, float, float);
   1070 static void jar_xm_update_frequency(jar_xm_context_t*, jar_xm_channel_context_t*);
   1071 
   1072 static void jar_xm_handle_note_and_instrument(jar_xm_context_t*, jar_xm_channel_context_t*, jar_xm_pattern_slot_t*);
   1073 static void jar_xm_trigger_note(jar_xm_context_t*, jar_xm_channel_context_t*, unsigned int flags);
   1074 static void jar_xm_cut_note(jar_xm_channel_context_t*);
   1075 static void jar_xm_key_off(jar_xm_channel_context_t*);
   1076 
   1077 static void jar_xm_post_pattern_change(jar_xm_context_t*);
   1078 static void jar_xm_row(jar_xm_context_t*);
   1079 static void jar_xm_tick(jar_xm_context_t*);
   1080 
   1081 static void jar_xm_next_of_sample(jar_xm_context_t*, jar_xm_channel_context_t*, int);
   1082 static void jar_xm_mixdown(jar_xm_context_t*, float*, float*);
   1083 
   1084 #define jar_xm_TRIGGER_KEEP_VOLUME (1 << 0)
   1085 #define jar_xm_TRIGGER_KEEP_PERIOD (1 << 1)
   1086 #define jar_xm_TRIGGER_KEEP_SAMPLE_POSITION (1 << 2)
   1087 
   1088                                             // C-2, C#2, D-2, D#2, E-2, F-2, F#2, G-2, G#2, A-2, A#2, B-2, C-3
   1089 static const uint16_t amiga_frequencies[] = { 1712, 1616, 1525, 1440, 1357, 1281, 1209, 1141, 1077, 1017,  961,  907, 856 };
   1090 
   1091                                             // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f
   1092 static const float multi_retrig_add[] = { 0.f, -1.f, -2.f, -4.f, -8.f, -16.f, 0.f, 0.f, 0.f, 1.f, 2.f, 4.f, 8.f, 16.f, 0.f, 0.f };
   1093 
   1094                                             // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f
   1095 static const float multi_retrig_multiply[] = { 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, .6666667f, .5f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.5f, 2.f };
   1096 
   1097 #define jar_xm_CLAMP_UP1F(vol, limit) do {            \
   1098         if((vol) > (limit)) (vol) = (limit);    \
   1099     } while(0)
   1100 #define jar_xm_CLAMP_UP(vol) jar_xm_CLAMP_UP1F((vol), 1.f)
   1101 
   1102 #define jar_xm_CLAMP_DOWN1F(vol, limit) do {        \
   1103         if((vol) < (limit)) (vol) = (limit);    \
   1104     } while(0)
   1105 #define jar_xm_CLAMP_DOWN(vol) jar_xm_CLAMP_DOWN1F((vol), .0f)
   1106 
   1107 #define jar_xm_CLAMP2F(vol, up, down) do {            \
   1108         if((vol) > (up)) (vol) = (up);            \
   1109         else if((vol) < (down)) (vol) = (down); \
   1110     } while(0)
   1111 #define jar_xm_CLAMP(vol) jar_xm_CLAMP2F((vol), 1.f, .0f)
   1112 
   1113 #define jar_xm_SLIDE_TOWARDS(val, goal, incr) do {        \
   1114         if((val) > (goal)) {                        \
   1115             (val) -= (incr);                        \
   1116             jar_xm_CLAMP_DOWN1F((val), (goal));            \
   1117         } else if((val) < (goal)) {                    \
   1118             (val) += (incr);                        \
   1119             jar_xm_CLAMP_UP1F((val), (goal));            \
   1120         }                                            \
   1121     } while(0)
   1122 
   1123 #define jar_xm_LERP(u, v, t) ((u) + (t) * ((v) - (u)))
   1124 #define jar_xm_INVERSE_LERP(u, v, lerp) (((lerp) - (u)) / ((v) - (u)))
   1125 
   1126 #define HAS_TONE_PORTAMENTO(s) ((s)->effect_type == 3 \
   1127                                  || (s)->effect_type == 5 \
   1128                                  || ((s)->volume_column >> 4) == 0xF)
   1129 #define HAS_ARPEGGIO(s) ((s)->effect_type == 0 \
   1130                           && (s)->effect_param != 0)
   1131 #define HAS_VIBRATO(s) ((s)->effect_type == 4 \
   1132                          || (s)->effect_param == 6 \
   1133                          || ((s)->volume_column >> 4) == 0xB)
   1134 #define NOTE_IS_VALID(n) ((n) > 0 && (n) < 97)
   1135 #define NOTE_OFF 97
   1136 
   1137 static float jar_xm_waveform(jar_xm_waveform_type_t waveform, uint8_t step) {
   1138     static unsigned int next_rand = 24492;
   1139     step %= 0x40;
   1140     switch(waveform) {
   1141     case jar_xm_SINE_WAVEFORM: /* No SIN() table used, direct calculation. */
   1142         return -sinf(2.f * 3.141592f * (float)step / (float)0x40);
   1143     case jar_xm_RAMP_DOWN_WAVEFORM: /* Ramp down: 1.0f when step = 0; -1.0f when step = 0x40 */
   1144         return (float)(0x20 - step) / 0x20;
   1145     case jar_xm_SQUARE_WAVEFORM: /* Square with a 50% duty */
   1146         return (step >= 0x20) ? 1.f : -1.f;
   1147     case jar_xm_RANDOM_WAVEFORM: /* Use the POSIX.1-2001 example, just to be deterministic across different machines */
   1148         next_rand = next_rand * 1103515245 + 12345;
   1149         return (float)((next_rand >> 16) & 0x7FFF) / (float)0x4000 - 1.f;
   1150     case jar_xm_RAMP_UP_WAVEFORM: /* Ramp up: -1.f when step = 0; 1.f when step = 0x40 */
   1151         return (float)(step - 0x20) / 0x20;
   1152     default:
   1153         break;
   1154     }
   1155     return .0f;
   1156 }
   1157 
   1158 static void jar_xm_autovibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) {
   1159     if(ch->instrument == NULL || ch->instrument->vibrato_depth == 0) return;
   1160     jar_xm_instrument_t* instr = ch->instrument;
   1161     float sweep = 1.f;
   1162     if(ch->autovibrato_ticks < instr->vibrato_sweep) { sweep = jar_xm_LERP(0.f, 1.f, (float)ch->autovibrato_ticks / (float)instr->vibrato_sweep); }
   1163     unsigned int step = ((ch->autovibrato_ticks++) * instr->vibrato_rate) >> 2;
   1164     ch->autovibrato_note_offset = .25f * jar_xm_waveform(instr->vibrato_type, step) * (float)instr->vibrato_depth / (float)0xF * sweep;
   1165     jar_xm_update_frequency(ctx, ch);
   1166 }
   1167 
   1168 static void jar_xm_vibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) {
   1169     unsigned int step = pos * (param >> 4);
   1170     ch->vibrato_note_offset = 2.f * jar_xm_waveform(ch->vibrato_waveform, step) * (float)(param & 0x0F) / (float)0xF;
   1171     jar_xm_update_frequency(ctx, ch);
   1172 }
   1173 
   1174 static void jar_xm_tremolo(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) {
   1175     unsigned int step = pos * (param >> 4);
   1176     ch->tremolo_volume = -1.f * jar_xm_waveform(ch->tremolo_waveform, step) * (float)(param & 0x0F) / (float)0xF;
   1177 }
   1178 
   1179 static void jar_xm_arpeggio(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t tick) {
   1180     switch(tick % 3) {
   1181     case 0:
   1182         ch->arp_in_progress = false;
   1183         ch->arp_note_offset = 0;
   1184         break;
   1185     case 2:
   1186         ch->arp_in_progress = true;
   1187         ch->arp_note_offset = param >> 4;
   1188         break;
   1189     case 1:
   1190         ch->arp_in_progress = true;
   1191         ch->arp_note_offset = param & 0x0F;
   1192         break;
   1193     }
   1194     jar_xm_update_frequency(ctx, ch);
   1195 }
   1196 
   1197 static void jar_xm_tone_portamento(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) {
   1198     /* 3xx called without a note, wait until we get an actual target note. */
   1199     if(ch->tone_portamento_target_period == 0.f) return;  /* no value, exit */
   1200     if(ch->period != ch->tone_portamento_target_period) {
   1201         jar_xm_SLIDE_TOWARDS(ch->period, ch->tone_portamento_target_period, (ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES ? 4.f : 1.f) * ch->tone_portamento_param);
   1202         jar_xm_update_frequency(ctx, ch);
   1203     }
   1204 }
   1205 
   1206 static void jar_xm_pitch_slide(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, float period_offset) {
   1207     /* Don't ask about the 4.f coefficient. I found mention of it nowhere. Found by ear. */
   1208     if(ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES) {period_offset *= 4.f; }
   1209     ch->period += period_offset;
   1210     jar_xm_CLAMP_DOWN(ch->period);
   1211     /* XXX: upper bound of period ? */
   1212     jar_xm_update_frequency(ctx, ch);
   1213 }
   1214 
   1215 static void jar_xm_panning_slide(jar_xm_channel_context_t* ch, uint8_t rawval) {
   1216     if (rawval & 0xF0) {ch->panning += (float)((rawval & 0xF0 )>> 4) / (float)0xFF;};
   1217     if (rawval & 0x0F) {ch->panning -= (float)(rawval & 0x0F) / (float)0xFF;};
   1218 };
   1219 
   1220 static void jar_xm_volume_slide(jar_xm_channel_context_t* ch, uint8_t rawval) {
   1221     if (rawval & 0xF0) {ch->volume += (float)((rawval & 0xF0) >> 4) / (float)0x40;};
   1222     if (rawval & 0x0F) {ch->volume -= (float)(rawval & 0x0F) / (float)0x40;};
   1223 };
   1224 
   1225 static float jar_xm_envelope_lerp(jar_xm_envelope_point_t* a, jar_xm_envelope_point_t* b, uint16_t pos) {
   1226     /* Linear interpolation between two envelope points */
   1227     if(pos <= a->frame) return a->value;
   1228     else if(pos >= b->frame) return b->value;
   1229     else {
   1230         float p = (float)(pos - a->frame) / (float)(b->frame - a->frame);
   1231         return a->value * (1 - p) + b->value * p;
   1232     }
   1233 }
   1234 
   1235 static void jar_xm_post_pattern_change(jar_xm_context_t* ctx) {
   1236     /* Loop if necessary */
   1237     if(ctx->current_table_index >= ctx->module.length) {
   1238         ctx->current_table_index = ctx->module.restart_position;
   1239         ctx->tempo =ctx->default_tempo; // reset to file default value
   1240         ctx->bpm = ctx->default_bpm; // reset to file default value
   1241         ctx->global_volume = ctx->default_global_volume; // reset to file default value
   1242     }
   1243 }
   1244 
   1245 static float jar_xm_linear_period(float note) {
   1246     return 7680.f - note * 64.f;
   1247 }
   1248 
   1249 static float jar_xm_linear_frequency(float period) {
   1250     return 8363.f * powf(2.f, (4608.f - period) / 768.f);
   1251 }
   1252 
   1253 static float jar_xm_amiga_period(float note) {
   1254     unsigned int intnote = note;
   1255     uint8_t a = intnote % 12;
   1256     int8_t octave = note / 12.f - 2;
   1257     uint16_t p1 = amiga_frequencies[a], p2 = amiga_frequencies[a + 1];
   1258     if(octave > 0) {
   1259         p1 >>= octave;
   1260         p2 >>= octave;
   1261     } else if(octave < 0) {
   1262         p1 <<= -octave;
   1263         p2 <<= -octave;
   1264     }
   1265     return jar_xm_LERP(p1, p2, note - intnote);
   1266 }
   1267 
   1268 static float jar_xm_amiga_frequency(float period) {
   1269     if(period == .0f) return .0f;
   1270     return 7093789.2f / (period * 2.f); /* This is the PAL value. (we could use the NTSC value also) */
   1271 }
   1272 
   1273 static float jar_xm_period(jar_xm_context_t* ctx, float note) {
   1274     switch(ctx->module.frequency_type) {
   1275     case jar_xm_LINEAR_FREQUENCIES:
   1276         return jar_xm_linear_period(note);
   1277     case jar_xm_AMIGA_FREQUENCIES:
   1278         return jar_xm_amiga_period(note);
   1279     }
   1280     return .0f;
   1281 }
   1282 
   1283 static float jar_xm_frequency(jar_xm_context_t* ctx, float period, float note_offset) {
   1284     switch(ctx->module.frequency_type) {
   1285     case jar_xm_LINEAR_FREQUENCIES:
   1286         return jar_xm_linear_frequency(period - 64.f * note_offset);
   1287     case jar_xm_AMIGA_FREQUENCIES:
   1288         if(note_offset == 0) { return jar_xm_amiga_frequency(period); };
   1289         int8_t octave;
   1290         float  note;
   1291         uint16_t p1, p2;
   1292         uint8_t a = octave = 0;
   1293 
   1294         /* Find the octave of the current period */
   1295         if(period > amiga_frequencies[0]) {
   1296             --octave;
   1297             while(period > (amiga_frequencies[0] << -octave)) --octave;
   1298         } else if(period < amiga_frequencies[12]) {
   1299             ++octave;
   1300             while(period < (amiga_frequencies[12] >> octave)) ++octave;
   1301         }
   1302 
   1303         /* Find the smallest note closest to the current period */
   1304         for(uint8_t i = 0; i < 12; ++i) {
   1305             p1 = amiga_frequencies[i], p2 = amiga_frequencies[i + 1];
   1306             if(octave > 0) {
   1307                 p1 >>= octave;
   1308                 p2 >>= octave;
   1309             } else if(octave < 0) {
   1310                 p1 <<= (-octave);
   1311                 p2 <<= (-octave);
   1312             }
   1313             if(p2 <= period && period <= p1) {
   1314                 a = i;
   1315                 break;
   1316             }
   1317         }
   1318         if(JAR_XM_DEBUG && (p1 < period || p2 > period)) { DEBUG("%i <= %f <= %i should hold but doesn't, this is a bug", p2, period, p1); }
   1319         note = 12.f * (octave + 2) + a + jar_xm_INVERSE_LERP(p1, p2, period);
   1320         return jar_xm_amiga_frequency(jar_xm_amiga_period(note + note_offset));
   1321     }
   1322 
   1323     return .0f;
   1324 }
   1325 
   1326 static void jar_xm_update_frequency(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) {
   1327     ch->frequency = jar_xm_frequency( ctx, ch->period, (ch->arp_note_offset > 0 ? ch->arp_note_offset : (  ch->vibrato_note_offset + ch->autovibrato_note_offset ))  );
   1328     ch->step = ch->frequency / ctx->rate;
   1329 }
   1330 
   1331 static void jar_xm_handle_note_and_instrument(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, jar_xm_pattern_slot_t* s) {
   1332     jar_xm_module_t* mod = &(ctx->module);
   1333     if(s->instrument > 0) {
   1334         if(HAS_TONE_PORTAMENTO(ch->current) && ch->instrument != NULL && ch->sample != NULL) {  /* Tone portamento in effect */
   1335             jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_PERIOD | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION);
   1336         } else if(s->instrument > ctx->module.num_instruments) {    /* Invalid instrument, Cut current note */
   1337             jar_xm_cut_note(ch);
   1338             ch->instrument = NULL;
   1339             ch->sample = NULL;
   1340         } else {
   1341             ch->instrument = ctx->module.instruments + (s->instrument - 1);
   1342             if(s->note == 0 && ch->sample != NULL) {  /* Ghost instrument, trigger note */
   1343                 /* Sample position is kept, but envelopes are reset */
   1344                 jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_SAMPLE_POSITION);
   1345             }
   1346         }
   1347     }
   1348 
   1349     if(NOTE_IS_VALID(s->note)) {
   1350         // note value is s->note -1
   1351         jar_xm_instrument_t* instr = ch->instrument;
   1352         if(HAS_TONE_PORTAMENTO(ch->current) && instr != NULL && ch->sample != NULL) {
   1353             /* Tone portamento in effect */
   1354             ch->note = s->note + ch->sample->relative_note + ch->sample->finetune / 128.f - 1.f;
   1355             ch->tone_portamento_target_period = jar_xm_period(ctx, ch->note);
   1356         } else if(instr == NULL || ch->instrument->num_samples == 0) {   /* Issue on instrument */
   1357             jar_xm_cut_note(ch);
   1358         } else {
   1359             if(instr->sample_of_notes[s->note - 1] < instr->num_samples) {
   1360                 if (mod->ramping) {
   1361                     for(int i = 0; i < jar_xm_SAMPLE_RAMPING_POINTS; ++i) {
   1362                         jar_xm_next_of_sample(ctx, ch, i);
   1363                     }
   1364                     ch->frame_count = 0;
   1365                 };
   1366                 ch->sample = instr->samples + instr->sample_of_notes[s->note - 1];
   1367                 ch->orig_note = ch->note = s->note + ch->sample->relative_note + ch->sample->finetune / 128.f - 1.f;
   1368                 if(s->instrument > 0) {
   1369                     jar_xm_trigger_note(ctx, ch, 0);
   1370                 } else {  /* Ghost note: keep old volume */
   1371                     jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_VOLUME);
   1372                 }
   1373             } else {
   1374                 jar_xm_cut_note(ch);
   1375             }
   1376         }
   1377     } else if(s->note == NOTE_OFF) {
   1378         jar_xm_key_off(ch);
   1379     }
   1380 
   1381     // Interpret Effect column
   1382     switch(s->effect_type) {
   1383     case 1: /* 1xx: Portamento up */
   1384         if(s->effect_param > 0) {    ch->portamento_up_param = s->effect_param; }
   1385         break;
   1386     case 2: /* 2xx: Portamento down */
   1387         if(s->effect_param > 0) {    ch->portamento_down_param = s->effect_param; }
   1388         break;
   1389     case 3: /* 3xx: Tone portamento */
   1390         if(s->effect_param > 0) {    ch->tone_portamento_param = s->effect_param; }
   1391         break;
   1392     case 4: /* 4xy: Vibrato */
   1393         if(s->effect_param & 0x0F) { ch->vibrato_param = (ch->vibrato_param & 0xF0) | (s->effect_param & 0x0F); }  /* Set vibrato depth */
   1394         if(s->effect_param >> 4) { ch->vibrato_param = (s->effect_param & 0xF0) | (ch->vibrato_param & 0x0F); }   /* Set vibrato speed */
   1395         break;
   1396     case 5: /* 5xy: Tone portamento + Volume slide */
   1397         if(s->effect_param > 0) {  ch->volume_slide_param = s->effect_param; }
   1398         break;
   1399     case 6: /* 6xy: Vibrato + Volume slide */
   1400         if(s->effect_param > 0) {    ch->volume_slide_param = s->effect_param; }
   1401         break;
   1402     case 7: /* 7xy: Tremolo */
   1403         if(s->effect_param & 0x0F) { ch->tremolo_param = (ch->tremolo_param & 0xF0) | (s->effect_param & 0x0F); } /* Set tremolo depth */
   1404         if(s->effect_param >> 4) { ch->tremolo_param = (s->effect_param & 0xF0) | (ch->tremolo_param & 0x0F); }  /* Set tremolo speed */
   1405         break;
   1406     case 8: /* 8xx: Set panning */
   1407         ch->panning = (float)s->effect_param / 255.f;
   1408         break;
   1409     case 9: /* 9xx: Sample offset */
   1410         if(ch->sample != 0) { //&& NOTE_IS_VALID(s->note)) {
   1411             uint32_t final_offset = s->effect_param << (ch->sample->bits == 16 ? 7 : 8);
   1412             switch (ch->sample->loop_type) {
   1413             case jar_xm_NO_LOOP:
   1414                 if(final_offset >= ch->sample->length) { /* Pretend the sample dosen't loop and is done playing */
   1415                     ch->sample_position = -1;
   1416                 } else {
   1417                     ch->sample_position = final_offset;
   1418                 }
   1419                 break;
   1420             case jar_xm_FORWARD_LOOP:
   1421                 if (final_offset >= ch->sample->loop_end) {
   1422                     ch->sample_position -= ch->sample->loop_length;
   1423                 } else if(final_offset >= ch->sample->length) {
   1424                     ch->sample_position = ch->sample->loop_start;
   1425                 } else {
   1426                     ch->sample_position = final_offset;
   1427                 }
   1428                 break;
   1429             case jar_xm_PING_PONG_LOOP:
   1430                 if(final_offset >= ch->sample->loop_end) {
   1431                     ch->ping = false;
   1432                     ch->sample_position = (ch->sample->loop_end << 1) - ch->sample_position;
   1433                 } else if(final_offset >= ch->sample->length) {
   1434                     ch->ping = false;
   1435                     ch->sample_position -= ch->sample->length - 1;
   1436                 } else {
   1437                     ch->sample_position = final_offset;
   1438                 };
   1439                 break;
   1440             }
   1441         }
   1442         break;
   1443     case 0xA: /* Axy: Volume slide */
   1444         if(s->effect_param > 0) {    ch->volume_slide_param = s->effect_param; }
   1445         break;
   1446     case 0xB: /* Bxx: Position jump */
   1447         if(s->effect_param < ctx->module.length) {
   1448             ctx->position_jump = true;
   1449             ctx->jump_dest = s->effect_param;
   1450         }
   1451         break;
   1452     case 0xC: /* Cxx: Set volume */
   1453         ch->volume = (float)((s->effect_param > 0x40) ? 0x40 : s->effect_param) / (float)0x40;
   1454         break;
   1455     case 0xD: /* Dxx: Pattern break */
   1456         /* Jump after playing this line */
   1457         ctx->pattern_break = true;
   1458         ctx->jump_row = (s->effect_param >> 4) * 10 + (s->effect_param & 0x0F);
   1459         break;
   1460     case 0xE: /* EXy: Extended command */
   1461         switch(s->effect_param >> 4) {
   1462         case 1: /* E1y: Fine portamento up */
   1463             if(s->effect_param & 0x0F) {    ch->fine_portamento_up_param = s->effect_param & 0x0F; }
   1464             jar_xm_pitch_slide(ctx, ch, -ch->fine_portamento_up_param);
   1465             break;
   1466         case 2: /* E2y: Fine portamento down */
   1467             if(s->effect_param & 0x0F) {    ch->fine_portamento_down_param = s->effect_param & 0x0F; }
   1468             jar_xm_pitch_slide(ctx, ch, ch->fine_portamento_down_param);
   1469             break;
   1470         case 4: /* E4y: Set vibrato control */
   1471             ch->vibrato_waveform = s->effect_param & 3;
   1472             ch->vibrato_waveform_retrigger = !((s->effect_param >> 2) & 1);
   1473             break;
   1474         case 5: /* E5y: Set finetune */
   1475             if(NOTE_IS_VALID(ch->current->note) && ch->sample != NULL) {
   1476                 ch->note = ch->current->note + ch->sample->relative_note + (float)(((s->effect_param & 0x0F) - 8) << 4) / 128.f - 1.f;
   1477                 ch->period = jar_xm_period(ctx, ch->note);
   1478                 jar_xm_update_frequency(ctx, ch);
   1479             }
   1480             break;
   1481         case 6: /* E6y: Pattern loop */
   1482             if(s->effect_param & 0x0F) {
   1483                 if((s->effect_param & 0x0F) == ch->pattern_loop_count) {   /* Loop is over */
   1484                     ch->pattern_loop_count = 0;
   1485                     ctx->position_jump = false;
   1486                 } else {    /* Jump to the beginning of the loop */
   1487                     ch->pattern_loop_count++;
   1488                     ctx->position_jump = true;
   1489                     ctx->jump_row = ch->pattern_loop_origin;
   1490                     ctx->jump_dest = ctx->current_table_index;
   1491                 }
   1492             } else {
   1493                 ch->pattern_loop_origin = ctx->current_row; /* Set loop start point */
   1494                 ctx->jump_row = ch->pattern_loop_origin;    /* Replicate FT2 E60 bug */
   1495             }
   1496             break;
   1497         case 7: /* E7y: Set tremolo control */
   1498             ch->tremolo_waveform = s->effect_param & 3;
   1499             ch->tremolo_waveform_retrigger = !((s->effect_param >> 2) & 1);
   1500             break;
   1501         case 0xA: /* EAy: Fine volume slide up */
   1502             if(s->effect_param & 0x0F) {   ch->fine_volume_slide_param = s->effect_param & 0x0F; }
   1503             jar_xm_volume_slide(ch, ch->fine_volume_slide_param << 4);
   1504             break;
   1505         case 0xB: /* EBy: Fine volume slide down */
   1506             if(s->effect_param & 0x0F) {   ch->fine_volume_slide_param = s->effect_param & 0x0F; }
   1507             jar_xm_volume_slide(ch, ch->fine_volume_slide_param);
   1508             break;
   1509         case 0xD: /* EDy: Note delay */
   1510             /* XXX: figure this out better. EDx triggers the note even when there no note and no instrument. But ED0 acts like like a ghost note, EDx (x != 0) does not. */
   1511             if(s->note == 0 && s->instrument == 0) {
   1512                 unsigned int flags = jar_xm_TRIGGER_KEEP_VOLUME;
   1513                 if(ch->current->effect_param & 0x0F) {
   1514                     ch->note = ch->orig_note;
   1515                     jar_xm_trigger_note(ctx, ch, flags);
   1516                 } else {
   1517                     jar_xm_trigger_note(ctx, ch, flags | jar_xm_TRIGGER_KEEP_PERIOD | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION );
   1518                 }
   1519             }
   1520             break;
   1521 
   1522         case 0xE: /* EEy: Pattern delay */
   1523             ctx->extra_ticks = (ch->current->effect_param & 0x0F) * ctx->tempo;
   1524             break;
   1525         default:
   1526             break;
   1527         }
   1528         break;
   1529 
   1530     case 0xF: /* Fxx: Set tempo/BPM */
   1531         if(s->effect_param > 0) {
   1532             if(s->effect_param <= 0x1F) {  // First 32 possible values adjust the ticks (goes into tempo)
   1533                 ctx->tempo = s->effect_param;
   1534             } else {                       //32 and greater values adjust the BPM
   1535                 ctx->bpm = s->effect_param;
   1536             }
   1537         }
   1538         break;
   1539 
   1540     case 16: /* Gxx: Set global volume */
   1541         ctx->global_volume = (float)((s->effect_param > 0x40) ? 0x40 : s->effect_param) / (float)0x40;
   1542         break;
   1543     case 17: /* Hxy: Global volume slide */
   1544         if(s->effect_param > 0) {    ch->global_volume_slide_param = s->effect_param; }
   1545         break;
   1546     case 21: /* Lxx: Set envelope position */
   1547         ch->volume_envelope_frame_count = s->effect_param;
   1548         ch->panning_envelope_frame_count = s->effect_param;
   1549         break;
   1550     case 25: /* Pxy: Panning slide */
   1551         if(s->effect_param > 0) {   ch->panning_slide_param = s->effect_param; }
   1552         break;
   1553     case 27: /* Rxy: Multi retrig note */
   1554         if(s->effect_param > 0) {
   1555             if((s->effect_param >> 4) == 0) {    /* Keep previous x value */
   1556                 ch->multi_retrig_param = (ch->multi_retrig_param & 0xF0) | (s->effect_param & 0x0F);
   1557             } else {
   1558                 ch->multi_retrig_param = s->effect_param;
   1559             }
   1560         }
   1561         break;
   1562     case 29: /* Txy: Tremor */
   1563         if(s->effect_param > 0) { ch->tremor_param = s->effect_param; }  /* Tremor x and y params are not separately kept in memory, unlike Rxy */
   1564         break;
   1565     case 33: /* Xxy: Extra stuff */
   1566         switch(s->effect_param >> 4) {
   1567         case 1: /* X1y: Extra fine portamento up */
   1568             if(s->effect_param & 0x0F) {    ch->extra_fine_portamento_up_param = s->effect_param & 0x0F; }
   1569             jar_xm_pitch_slide(ctx, ch, -1.0f * ch->extra_fine_portamento_up_param);
   1570             break;
   1571         case 2: /* X2y: Extra fine portamento down */
   1572             if(s->effect_param & 0x0F) {   ch->extra_fine_portamento_down_param = s->effect_param & 0x0F; }
   1573             jar_xm_pitch_slide(ctx, ch, ch->extra_fine_portamento_down_param);
   1574             break;
   1575         default:
   1576             break;
   1577         }
   1578         break;
   1579     default:
   1580         break;
   1581     }
   1582 }
   1583 
   1584 static void jar_xm_trigger_note(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, unsigned int flags) {
   1585     if (!(flags & jar_xm_TRIGGER_KEEP_SAMPLE_POSITION)) {
   1586         ch->sample_position = 0.f;
   1587         ch->ping = true;
   1588     };
   1589 
   1590     if (!(flags & jar_xm_TRIGGER_KEEP_VOLUME)) {
   1591        if(ch->sample != NULL) {
   1592         ch->volume = ch->sample->volume;
   1593         };
   1594     };
   1595     ch->panning = ch->sample->panning;
   1596     ch->sustained = true;
   1597     ch->fadeout_volume = ch->volume_envelope_volume = 1.0f;
   1598     ch->panning_envelope_panning = .5f;
   1599     ch->volume_envelope_frame_count = ch->panning_envelope_frame_count = 0;
   1600     ch->vibrato_note_offset = 0.f;
   1601     ch->tremolo_volume = 0.f;
   1602     ch->tremor_on = false;
   1603     ch->autovibrato_ticks = 0;
   1604 
   1605     if(ch->vibrato_waveform_retrigger) { ch->vibrato_ticks = 0; } /* XXX: should the waveform itself also be reset to sine? */
   1606     if(ch->tremolo_waveform_retrigger) { ch->tremolo_ticks = 0; }
   1607     if(!(flags & jar_xm_TRIGGER_KEEP_PERIOD)) {
   1608         ch->period = jar_xm_period(ctx, ch->note);
   1609         jar_xm_update_frequency(ctx, ch);
   1610     }
   1611     ch->latest_trigger = ctx->generated_samples;
   1612     if(ch->instrument != NULL) { ch->instrument->latest_trigger = ctx->generated_samples; }
   1613     if(ch->sample != NULL) {     ch->sample->latest_trigger = ctx->generated_samples; }
   1614 }
   1615 
   1616 static void jar_xm_cut_note(jar_xm_channel_context_t* ch) {
   1617     ch->volume = .0f; /* NB: this is not the same as Key Off */
   1618 //    ch->curr_left = .0f;
   1619 //    ch->curr_right = .0f;
   1620 }
   1621 
   1622 static void jar_xm_key_off(jar_xm_channel_context_t* ch) {
   1623     ch->sustained = false; /* Key Off */
   1624     if(ch->instrument == NULL || !ch->instrument->volume_envelope.enabled) { jar_xm_cut_note(ch); } /* If no volume envelope is used, also cut the note */
   1625 }
   1626 
   1627 static void jar_xm_row(jar_xm_context_t* ctx) {
   1628     if(ctx->position_jump) {
   1629         ctx->current_table_index = ctx->jump_dest;
   1630         ctx->current_row = ctx->jump_row;
   1631         ctx->position_jump = false;
   1632         ctx->pattern_break = false;
   1633         ctx->jump_row = 0;
   1634         jar_xm_post_pattern_change(ctx);
   1635     } else if(ctx->pattern_break) {
   1636         ctx->current_table_index++;
   1637         ctx->current_row = ctx->jump_row;
   1638         ctx->pattern_break = false;
   1639         ctx->jump_row = 0;
   1640         jar_xm_post_pattern_change(ctx);
   1641     }
   1642     jar_xm_pattern_t* cur = ctx->module.patterns + ctx->module.pattern_table[ctx->current_table_index];
   1643     bool in_a_loop = false;
   1644 
   1645     /* Read notes information for all channels into temporary pattern slot */
   1646     for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
   1647         jar_xm_pattern_slot_t* s = cur->slots + ctx->current_row * ctx->module.num_channels + i;
   1648         jar_xm_channel_context_t* ch = ctx->channels + i;
   1649         ch->current = s;
   1650         // If there is no note delay effect (0xED) then...
   1651         if(s->effect_type != 0xE || s->effect_param >> 4 != 0xD) {
   1652             //********** Process the channel slot information **********
   1653             jar_xm_handle_note_and_instrument(ctx, ch, s);
   1654         } else {
   1655             // read the note delay information
   1656             ch->note_delay_param = s->effect_param & 0x0F;
   1657         }
   1658         if(!in_a_loop && ch->pattern_loop_count > 0) {
   1659             // clarify if in a loop or not
   1660             in_a_loop = true;
   1661         }
   1662     }
   1663 
   1664     if(!in_a_loop) {
   1665         /* No E6y loop is in effect (or we are in the first pass) */
   1666         ctx->loop_count = (ctx->row_loop_count[MAX_NUM_ROWS * ctx->current_table_index + ctx->current_row]++);
   1667     }
   1668 
   1669     /// Move to next row
   1670     ctx->current_row++; /* uint8 warning: can increment from 255 to 0, in which case it is still necessary to go the next pattern. */
   1671     if (!ctx->position_jump && !ctx->pattern_break && (ctx->current_row >= cur->num_rows || ctx->current_row == 0)) {
   1672         ctx->current_table_index++;
   1673         ctx->current_row = ctx->jump_row; /* This will be 0 most of the time, except when E60 is used */
   1674         ctx->jump_row = 0;
   1675         jar_xm_post_pattern_change(ctx);
   1676     }
   1677 }
   1678 
   1679 static void jar_xm_envelope_tick(jar_xm_channel_context_t *ch, jar_xm_envelope_t *env, uint16_t *counter, float *outval) {
   1680     if(env->num_points < 2) {
   1681         if(env->num_points == 1) {
   1682             *outval = (float)env->points[0].value / (float)0x40;
   1683             if(*outval > 1) { *outval = 1; };
   1684         } else {;
   1685             return;
   1686         };
   1687     } else {
   1688         if(env->loop_enabled) {
   1689             uint16_t loop_start = env->points[env->loop_start_point].frame;
   1690             uint16_t loop_end = env->points[env->loop_end_point].frame;
   1691             uint16_t loop_length = loop_end - loop_start;
   1692             if(*counter >= loop_end) { *counter -= loop_length; };
   1693         };
   1694         for(uint8_t j = 0; j < (env->num_points - 1); ++j) {
   1695             if(env->points[j].frame <= *counter && env->points[j+1].frame >= *counter) {
   1696                 *outval = jar_xm_envelope_lerp(env->points + j, env->points + j + 1, *counter) / (float)0x40;
   1697                 break;
   1698             };
   1699         };
   1700         /* Make sure it is safe to increment frame count */
   1701         if(!ch->sustained || !env->sustain_enabled || *counter != env->points[env->sustain_point].frame) { (*counter)++; };
   1702     };
   1703 };
   1704 
   1705 static void jar_xm_envelopes(jar_xm_channel_context_t *ch) {
   1706     if(ch->instrument != NULL) {
   1707         if(ch->instrument->volume_envelope.enabled) {
   1708             if(!ch->sustained) {
   1709                 ch->fadeout_volume -= (float)ch->instrument->volume_fadeout / 65536.f;
   1710                 jar_xm_CLAMP_DOWN(ch->fadeout_volume);
   1711             };
   1712             jar_xm_envelope_tick(ch, &(ch->instrument->volume_envelope), &(ch->volume_envelope_frame_count), &(ch->volume_envelope_volume));
   1713         };
   1714         if(ch->instrument->panning_envelope.enabled) {
   1715             jar_xm_envelope_tick(ch, &(ch->instrument->panning_envelope), &(ch->panning_envelope_frame_count), &(ch->panning_envelope_panning));
   1716         };
   1717     };
   1718 };
   1719 
   1720 static void jar_xm_tick(jar_xm_context_t* ctx) {
   1721     if(ctx->current_tick == 0) {
   1722         jar_xm_row(ctx);        // We have processed all ticks and we run the row
   1723     }
   1724 
   1725     jar_xm_module_t* mod = &(ctx->module);
   1726     for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
   1727         jar_xm_channel_context_t* ch = ctx->channels + i;
   1728         jar_xm_envelopes(ch);
   1729         jar_xm_autovibrato(ctx, ch);
   1730         if(ch->arp_in_progress && !HAS_ARPEGGIO(ch->current)) {
   1731             ch->arp_in_progress = false;
   1732             ch->arp_note_offset = 0;
   1733             jar_xm_update_frequency(ctx, ch);
   1734         }
   1735         if(ch->vibrato_in_progress && !HAS_VIBRATO(ch->current)) {
   1736             ch->vibrato_in_progress = false;
   1737             ch->vibrato_note_offset = 0.f;
   1738             jar_xm_update_frequency(ctx, ch);
   1739         }
   1740 
   1741         // Effects in volumne column mostly handled on a per tick basis
   1742         switch(ch->current->volume_column & 0xF0) {
   1743         case 0x50: // Checks for volume = 64
   1744             if(ch->current->volume_column != 0x50) break;
   1745         case 0x10: // Set volume 0-15
   1746         case 0x20: // Set volume 16-32
   1747         case 0x30: // Set volume 32-48
   1748         case 0x40: // Set volume 48-64
   1749             ch->volume = (float)(ch->current->volume_column - 16) / 64.0f;
   1750             break;
   1751         case 0x60: // Volume slide down
   1752             jar_xm_volume_slide(ch, ch->current->volume_column & 0x0F);
   1753             break;
   1754         case 0x70: // Volume slide up
   1755             jar_xm_volume_slide(ch, ch->current->volume_column << 4);
   1756             break;
   1757         case 0x80: // Fine volume slide down
   1758             jar_xm_volume_slide(ch, ch->current->volume_column & 0x0F);
   1759             break;
   1760         case 0x90: // Fine volume slide up
   1761             jar_xm_volume_slide(ch, ch->current->volume_column << 4);
   1762             break;
   1763         case 0xA0: // Set vibrato speed
   1764             ch->vibrato_param = (ch->vibrato_param & 0x0F) | ((ch->current->volume_column & 0x0F) << 4);
   1765             break;
   1766         case 0xB0: // Vibrato
   1767             ch->vibrato_in_progress = false;
   1768             jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++);
   1769             break;
   1770         case 0xC0: // Set panning
   1771             if(!ctx->current_tick ) {
   1772                 ch->panning = (float)(ch->current->volume_column & 0x0F) / 15.0f;
   1773             }
   1774             break;
   1775         case 0xD0: // Panning slide left
   1776             jar_xm_panning_slide(ch, ch->current->volume_column & 0x0F);
   1777             break;
   1778         case 0xE0: // Panning slide right
   1779             jar_xm_panning_slide(ch, ch->current->volume_column << 4);
   1780             break;
   1781         case 0xF0: // Tone portamento
   1782             if(!ctx->current_tick ) {
   1783                 if(ch->current->volume_column & 0x0F) { ch->tone_portamento_param = ((ch->current->volume_column & 0x0F) << 4) | (ch->current->volume_column & 0x0F); }
   1784             };
   1785             jar_xm_tone_portamento(ctx, ch);
   1786             break;
   1787         default:
   1788             break;
   1789         }
   1790 
   1791         // Only some standard effects handled on a per tick basis
   1792         // see jar_xm_handle_note_and_instrument for all effects handling on a per row basis
   1793         switch(ch->current->effect_type) {
   1794         case 0: /* 0xy: Arpeggio */
   1795             if(ch->current->effect_param > 0) {
   1796                 char arp_offset = ctx->tempo % 3;
   1797                 switch(arp_offset) {
   1798                 case 2: /* 0 -> x -> 0 -> y -> x -> ... */
   1799                     if(ctx->current_tick == 1) {
   1800                         ch->arp_in_progress = true;
   1801                         ch->arp_note_offset = ch->current->effect_param >> 4;
   1802                         jar_xm_update_frequency(ctx, ch);
   1803                         break;
   1804                     }
   1805                     /* No break here, this is intended */
   1806                 case 1: /* 0 -> 0 -> y -> x -> ... */
   1807                     if(ctx->current_tick == 0) {
   1808                         ch->arp_in_progress = false;
   1809                         ch->arp_note_offset = 0;
   1810                         jar_xm_update_frequency(ctx, ch);
   1811                         break;
   1812                     }
   1813                     /* No break here, this is intended */
   1814                 case 0: /* 0 -> y -> x -> ... */
   1815                     jar_xm_arpeggio(ctx, ch, ch->current->effect_param, ctx->current_tick - arp_offset);
   1816                 default:
   1817                     break;
   1818                 }
   1819             }
   1820             break;
   1821 
   1822         case 1: /* 1xx: Portamento up */
   1823             if(ctx->current_tick == 0) break;
   1824             jar_xm_pitch_slide(ctx, ch, -ch->portamento_up_param);
   1825             break;
   1826         case 2: /* 2xx: Portamento down */
   1827             if(ctx->current_tick == 0) break;
   1828             jar_xm_pitch_slide(ctx, ch, ch->portamento_down_param);
   1829             break;
   1830         case 3: /* 3xx: Tone portamento */
   1831             if(ctx->current_tick == 0) break;
   1832             jar_xm_tone_portamento(ctx, ch);
   1833             break;
   1834         case 4: /* 4xy: Vibrato */
   1835             if(ctx->current_tick == 0) break;
   1836             ch->vibrato_in_progress = true;
   1837             jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++);
   1838             break;
   1839         case 5: /* 5xy: Tone portamento + Volume slide */
   1840             if(ctx->current_tick == 0) break;
   1841             jar_xm_tone_portamento(ctx, ch);
   1842             jar_xm_volume_slide(ch, ch->volume_slide_param);
   1843             break;
   1844         case 6: /* 6xy: Vibrato + Volume slide */
   1845             if(ctx->current_tick == 0) break;
   1846             ch->vibrato_in_progress = true;
   1847             jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++);
   1848             jar_xm_volume_slide(ch, ch->volume_slide_param);
   1849             break;
   1850         case 7: /* 7xy: Tremolo */
   1851             if(ctx->current_tick == 0) break;
   1852             jar_xm_tremolo(ctx, ch, ch->tremolo_param, ch->tremolo_ticks++);
   1853             break;
   1854         case 8: /* 8xy: Set panning */
   1855             break;
   1856         case 9: /* 9xy: Sample offset */
   1857             break;
   1858         case 0xA: /* Axy: Volume slide */
   1859             if(ctx->current_tick == 0) break;
   1860             jar_xm_volume_slide(ch, ch->volume_slide_param);
   1861             break;
   1862         case 0xE: /* EXy: Extended command */
   1863             switch(ch->current->effect_param >> 4) {
   1864             case 0x9: /* E9y: Retrigger note */
   1865                 if(ctx->current_tick != 0 && ch->current->effect_param & 0x0F) {
   1866                     if(!(ctx->current_tick % (ch->current->effect_param & 0x0F))) {
   1867                         jar_xm_trigger_note(ctx, ch, 0);
   1868                         jar_xm_envelopes(ch);
   1869                     }
   1870                 }
   1871                 break;
   1872             case 0xC: /* ECy: Note cut */
   1873                 if((ch->current->effect_param & 0x0F) == ctx->current_tick) {
   1874                     jar_xm_cut_note(ch);
   1875                 }
   1876                 break;
   1877             case 0xD: /* EDy: Note delay */
   1878                 if(ch->note_delay_param == ctx->current_tick) {
   1879                     jar_xm_handle_note_and_instrument(ctx, ch, ch->current);
   1880                     jar_xm_envelopes(ch);
   1881                 }
   1882                 break;
   1883             default:
   1884                 break;
   1885             }
   1886             break;
   1887         case 16: /* Fxy: Set tempo/BPM */
   1888             break;
   1889         case 17: /* Hxy: Global volume slide */
   1890             if(ctx->current_tick == 0) break;
   1891             if((ch->global_volume_slide_param & 0xF0) && (ch->global_volume_slide_param & 0x0F)) { break; }; /* Invalid state */
   1892             if(ch->global_volume_slide_param & 0xF0) {    /* Global slide up */
   1893                 float f = (float)(ch->global_volume_slide_param >> 4) / (float)0x40;
   1894                 ctx->global_volume += f;
   1895                 jar_xm_CLAMP_UP(ctx->global_volume);
   1896             } else {                                      /* Global slide down */
   1897                 float f = (float)(ch->global_volume_slide_param & 0x0F) / (float)0x40;
   1898                 ctx->global_volume -= f;
   1899                 jar_xm_CLAMP_DOWN(ctx->global_volume);
   1900             };
   1901             break;
   1902 
   1903         case 20: /* Kxx: Key off */
   1904             if(ctx->current_tick == ch->current->effect_param) {     jar_xm_key_off(ch); };
   1905             break;
   1906         case 21: /* Lxx: Set envelope position */
   1907             break;
   1908         case 25: /* Pxy: Panning slide */
   1909             if(ctx->current_tick == 0) break;
   1910             jar_xm_panning_slide(ch, ch->panning_slide_param);
   1911             break;
   1912         case 27: /* Rxy: Multi retrig note */
   1913             if(ctx->current_tick == 0) break;
   1914             if(((ch->multi_retrig_param) & 0x0F) == 0) break;
   1915             if((ctx->current_tick % (ch->multi_retrig_param & 0x0F)) == 0) {
   1916                 float v = ch->volume * multi_retrig_multiply[ch->multi_retrig_param >> 4]
   1917                     + multi_retrig_add[ch->multi_retrig_param >> 4];
   1918                 jar_xm_CLAMP(v);
   1919                 jar_xm_trigger_note(ctx, ch, 0);
   1920                 ch->volume = v;
   1921             };
   1922             break;
   1923 
   1924         case 29: /* Txy: Tremor */
   1925             if(ctx->current_tick == 0) break;
   1926             ch->tremor_on = ( (ctx->current_tick - 1) % ((ch->tremor_param >> 4) + (ch->tremor_param & 0x0F) + 2) > (ch->tremor_param >> 4)  );
   1927             break;
   1928         default:
   1929             break;
   1930         };
   1931 
   1932         float panning, volume;
   1933         panning = ch->panning + (ch->panning_envelope_panning - .5f) * (.5f - fabs(ch->panning - .5f)) * 2.0f;
   1934         if(ch->tremor_on) {
   1935             volume = .0f;
   1936         } else {
   1937             volume = ch->volume + ch->tremolo_volume;
   1938             jar_xm_CLAMP(volume);
   1939             volume *= ch->fadeout_volume * ch->volume_envelope_volume;
   1940         };
   1941 
   1942         if (mod->ramping) {
   1943             ch->target_panning = panning;
   1944             ch->target_volume = volume;
   1945         } else {
   1946             ch->actual_panning = panning;
   1947             ch->actual_volume = volume;
   1948         };
   1949     };
   1950 
   1951     ctx->current_tick++; // ok so we understand that ticks increment within the row
   1952     if(ctx->current_tick >= ctx->tempo + ctx->extra_ticks) {
   1953         // This means it reached the end of the row and we reset
   1954         ctx->current_tick = 0;
   1955         ctx->extra_ticks = 0;
   1956     };
   1957 
   1958     // Number of ticks / second = BPM * 0.4
   1959     ctx->remaining_samples_in_tick += (float)ctx->rate / ((float)ctx->bpm * 0.4f);
   1960 };
   1961 
   1962 static void jar_xm_next_of_sample(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, int previous) {
   1963     jar_xm_module_t* mod = &(ctx->module);
   1964 
   1965 //    ch->curr_left = 0.f;
   1966 //    ch->curr_right = 0.f;
   1967     if(ch->instrument == NULL || ch->sample == NULL || ch->sample_position < 0) {
   1968         ch->curr_left = 0.f;
   1969         ch->curr_right = 0.f;
   1970         if (mod->ramping) {
   1971             if (ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) {
   1972                 if (previous > -1) {
   1973                     ch->end_of_previous_sample_left[previous] = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], ch->curr_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
   1974                     ch->end_of_previous_sample_right[previous] = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], ch->curr_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
   1975                 } else {
   1976                     ch->curr_left = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], ch->curr_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
   1977                     ch->curr_right = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], ch->curr_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
   1978                 };
   1979             };
   1980         };
   1981         return;
   1982     };
   1983     if(ch->sample->length == 0) {
   1984         return;
   1985     };
   1986 
   1987     float t = 0.f;
   1988     uint32_t b = 0;
   1989     if(mod->linear_interpolation) {
   1990         b = ch->sample_position + 1;
   1991         t = ch->sample_position - (uint32_t)ch->sample_position; /* Cheaper than fmodf(., 1.f) */
   1992     };
   1993 
   1994     float u_left, u_right;
   1995     u_left = ch->sample->data[(uint32_t)ch->sample_position];
   1996     if (ch->sample->stereo) {
   1997         u_right = ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length];
   1998     } else {
   1999         u_right = u_left;
   2000     };
   2001     float v_left = 0.f, v_right = 0.f;
   2002     switch(ch->sample->loop_type) {
   2003     case jar_xm_NO_LOOP:
   2004         if(mod->linear_interpolation) {
   2005             v_left = (b < ch->sample->length) ? ch->sample->data[b] : .0f;
   2006             if (ch->sample->stereo) {
   2007                 v_right = (b < ch->sample->length) ? ch->sample->data[b + ch->sample->length] : .0f;
   2008             } else {
   2009                 v_right = v_left;
   2010             };
   2011         };
   2012         ch->sample_position += ch->step;
   2013         if(ch->sample_position >= ch->sample->length) { ch->sample_position = -1; } // stop playing this sample
   2014         break;
   2015     case jar_xm_FORWARD_LOOP:
   2016         if(mod->linear_interpolation) {
   2017             v_left = ch->sample->data[ (b == ch->sample->loop_end) ? ch->sample->loop_start : b ];
   2018             if (ch->sample->stereo) {
   2019                 v_right = ch->sample->data[ (b == ch->sample->loop_end) ? ch->sample->loop_start + ch->sample->length : b + ch->sample->length];
   2020             } else {
   2021                 v_right = v_left;
   2022             };
   2023         };
   2024         ch->sample_position += ch->step;
   2025         if (ch->sample_position >= ch->sample->loop_end) {
   2026             ch->sample_position -= ch->sample->loop_length;
   2027         };
   2028         if(ch->sample_position >= ch->sample->length) {
   2029             ch->sample_position = ch->sample->loop_start;
   2030         };
   2031         break;
   2032     case jar_xm_PING_PONG_LOOP:
   2033         if(ch->ping) {
   2034             if(mod->linear_interpolation) {
   2035                 v_left = (b >= ch->sample->loop_end) ? ch->sample->data[(uint32_t)ch->sample_position] : ch->sample->data[b];
   2036                 if (ch->sample->stereo) {
   2037                     v_right = (b >= ch->sample->loop_end) ? ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length] : ch->sample->data[b + ch->sample->length];
   2038                 } else {
   2039                     v_right = v_left;
   2040                 };
   2041             };
   2042             ch->sample_position += ch->step;
   2043             if(ch->sample_position >= ch->sample->loop_end) {
   2044                 ch->ping = false;
   2045                 ch->sample_position = (ch->sample->loop_end << 1) - ch->sample_position;
   2046             };
   2047             if(ch->sample_position >= ch->sample->length) {
   2048                 ch->ping = false;
   2049                 ch->sample_position -= ch->sample->length - 1;
   2050             };
   2051         } else {
   2052             if(mod->linear_interpolation) {
   2053                 v_left = u_left;
   2054                 v_right = u_right;
   2055                 u_left = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[(uint32_t)ch->sample_position] : ch->sample->data[b - 2];
   2056                 if (ch->sample->stereo) {
   2057                     u_right = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length] : ch->sample->data[b + ch->sample->length - 2];
   2058                 } else {
   2059                     u_right = u_left;
   2060                 };
   2061             };
   2062             ch->sample_position -= ch->step;
   2063             if(ch->sample_position <= ch->sample->loop_start) {
   2064                 ch->ping = true;
   2065                 ch->sample_position = (ch->sample->loop_start << 1) - ch->sample_position;
   2066             };
   2067             if (ch->sample_position <= .0f) {
   2068                 ch->ping = true;
   2069                 ch->sample_position = .0f;
   2070             };
   2071         };
   2072         break;
   2073 
   2074     default:
   2075         v_left = .0f;
   2076         v_right = .0f;
   2077         break;
   2078     };
   2079 
   2080     float endval_left = mod->linear_interpolation ? jar_xm_LERP(u_left, v_left, t) : u_left;
   2081     float endval_right = mod->linear_interpolation ? jar_xm_LERP(u_right, v_right, t) : u_right;
   2082 
   2083     if (mod->ramping) {
   2084         if(ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) {
   2085             /* Smoothly transition between old and new sample. */
   2086             if (previous > -1) {
   2087                 ch->end_of_previous_sample_left[previous] = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], endval_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
   2088                 ch->end_of_previous_sample_right[previous] = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], endval_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
   2089             } else {
   2090                 ch->curr_left = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], endval_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
   2091                 ch->curr_right = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], endval_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
   2092             };
   2093         };
   2094     };
   2095 
   2096     if (previous > -1) {
   2097         ch->end_of_previous_sample_left[previous] = endval_left;
   2098         ch->end_of_previous_sample_right[previous] = endval_right;
   2099     } else {
   2100         ch->curr_left = endval_left;
   2101         ch->curr_right = endval_right;
   2102     };
   2103 };
   2104 
   2105 // gather all channel audio into stereo float
   2106 static void jar_xm_mixdown(jar_xm_context_t* ctx, float* left, float* right) {
   2107     jar_xm_module_t* mod = &(ctx->module);
   2108 
   2109     if(ctx->remaining_samples_in_tick <= 0) {
   2110         jar_xm_tick(ctx);
   2111     };
   2112     ctx->remaining_samples_in_tick--;
   2113     *left = 0.f;
   2114     *right = 0.f;
   2115     if(ctx->max_loop_count > 0 && ctx->loop_count > ctx->max_loop_count) { return; }
   2116 
   2117     for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
   2118         jar_xm_channel_context_t* ch = ctx->channels + i;
   2119         if(ch->instrument != NULL && ch->sample != NULL && ch->sample_position >= 0) {
   2120             jar_xm_next_of_sample(ctx, ch, -1);
   2121             if(!ch->muted && !ch->instrument->muted) {
   2122                 *left  += ch->curr_left * ch->actual_volume * (1.f - ch->actual_panning);
   2123                 *right += ch->curr_right * ch->actual_volume * ch->actual_panning;
   2124             };
   2125 
   2126             if (mod->ramping) {
   2127                 ch->frame_count++;
   2128                 jar_xm_SLIDE_TOWARDS(ch->actual_volume, ch->target_volume, ctx->volume_ramp);
   2129                 jar_xm_SLIDE_TOWARDS(ch->actual_panning, ch->target_panning, ctx->panning_ramp);
   2130             };
   2131         };
   2132     };
   2133     if (ctx->global_volume != 1.0f) {
   2134         *left *= ctx->global_volume;
   2135         *right *= ctx->global_volume;
   2136     };
   2137 
   2138     // experimental
   2139 //    float counter = (float)ctx->generated_samples * 0.0001f
   2140 //    *left = tan(&left + sin(counter));
   2141 //    *right = tan(&right + cos(counter));
   2142 
   2143     // apply brick wall limiter when audio goes beyond bounderies
   2144     if(*left < -1.0)  {*left = -1.0;}  else if(*left > 1.0)  {*left = 1.0;};
   2145     if(*right < -1.0) {*right = -1.0;} else if(*right > 1.0) {*right = 1.0;};
   2146 };
   2147 
   2148 void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples) {
   2149     if(ctx && output) {
   2150         ctx->generated_samples += numsamples;
   2151         for(size_t i = 0; i < numsamples; i++) {
   2152             jar_xm_mixdown(ctx, output + (2 * i), output + (2 * i + 1));
   2153         };
   2154     };
   2155 };
   2156 
   2157 uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx) {
   2158     uint64_t total = 0;
   2159     uint8_t currentLoopCount = jar_xm_get_loop_count(ctx);
   2160     jar_xm_set_max_loop_count(ctx, 0);
   2161     while(jar_xm_get_loop_count(ctx) == currentLoopCount) {
   2162         total += ctx->remaining_samples_in_tick;
   2163         ctx->remaining_samples_in_tick = 0;
   2164         jar_xm_tick(ctx);
   2165     }
   2166     ctx->loop_count = currentLoopCount;
   2167     return total;
   2168 }
   2169 
   2170 //--------------------------------------------
   2171 //FILE LOADER - TODO - NEEDS TO BE CLEANED UP
   2172 //--------------------------------------------
   2173 #undef DEBUG
   2174 #define DEBUG(...) do {      \
   2175         fprintf(stderr, __VA_ARGS__); \
   2176         fflush(stderr); \
   2177     } while(0)
   2178 
   2179 #define DEBUG_ERR(...) do {      \
   2180         fprintf(stderr, __VA_ARGS__); \
   2181         fflush(stderr); \
   2182     } while(0)
   2183 
   2184 #define FATAL(...) do {      \
   2185         fprintf(stderr, __VA_ARGS__); \
   2186         fflush(stderr); \
   2187         exit(1); \
   2188     } while(0)
   2189 
   2190 #define FATAL_ERR(...) do {      \
   2191         fprintf(stderr, __VA_ARGS__); \
   2192         fflush(stderr); \
   2193         exit(1); \
   2194     } while(0)
   2195 
   2196 
   2197 int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const char* filename) {
   2198     FILE* xmf;
   2199     int size;
   2200     int ret;
   2201 
   2202     xmf = fopen(filename, "rb");
   2203     if(xmf == NULL) {
   2204         DEBUG_ERR("Could not open input file");
   2205         *ctx = NULL;
   2206         return 3;
   2207     }
   2208 
   2209     fseek(xmf, 0, SEEK_END);
   2210     size = ftell(xmf);
   2211     rewind(xmf);
   2212     if(size == -1) {
   2213         fclose(xmf);
   2214         DEBUG_ERR("fseek() failed");
   2215         *ctx = NULL;
   2216         return 4;
   2217     }
   2218 
   2219     char* data = JARXM_MALLOC(size + 1);
   2220     if(!data || fread(data, 1, size, xmf) < size) {
   2221         fclose(xmf);
   2222         DEBUG_ERR(data ? "fread() failed" : "JARXM_MALLOC() failed");
   2223         JARXM_FREE(data);
   2224         *ctx = NULL;
   2225         return 5;
   2226     }
   2227 
   2228     fclose(xmf);
   2229 
   2230     ret = jar_xm_create_context_safe(ctx, data, size, rate);
   2231     JARXM_FREE(data);
   2232 
   2233     switch(ret) {
   2234     case 0:
   2235         break;
   2236     case 1:        DEBUG("could not create context: module is not sane\n");
   2237         *ctx = NULL;
   2238         return 1;
   2239         break;
   2240     case 2:        FATAL("could not create context: malloc failed\n");
   2241         return 2;
   2242         break;
   2243     default:       FATAL("could not create context: unknown error\n");
   2244         return 6;
   2245         break;
   2246     }
   2247 
   2248     return 0;
   2249 }
   2250 
   2251 // not part of the original library
   2252 void jar_xm_reset(jar_xm_context_t* ctx) {
   2253     for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++) {
   2254         jar_xm_cut_note(&ctx->channels[i]);
   2255     }
   2256     ctx->generated_samples = 0;
   2257     ctx->current_row = 0;
   2258     ctx->current_table_index = 0;
   2259     ctx->current_tick = 0;
   2260     ctx->tempo =ctx->default_tempo; // reset to file default value
   2261     ctx->bpm = ctx->default_bpm; // reset to file default value
   2262     ctx->global_volume = ctx->default_global_volume; // reset to file default value
   2263 }
   2264 
   2265 
   2266 void jar_xm_flip_linear_interpolation(jar_xm_context_t* ctx) {
   2267     if (ctx->module.linear_interpolation) {
   2268         ctx->module.linear_interpolation = 0;
   2269     } else {
   2270         ctx->module.linear_interpolation = 1;
   2271     }
   2272 }
   2273 
   2274 void jar_xm_table_jump(jar_xm_context_t* ctx, int table_ptr) {
   2275     for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++) {
   2276         jar_xm_cut_note(&ctx->channels[i]);
   2277     }
   2278     ctx->current_row = 0;
   2279     ctx->current_tick = 0;
   2280     if(table_ptr > 0 && table_ptr < ctx->module.length) {
   2281         ctx->current_table_index = table_ptr;
   2282         ctx->module.restart_position = table_ptr; // The reason to jump is to start a new loop or track
   2283     } else {
   2284         ctx->current_table_index = 0;
   2285         ctx->module.restart_position = 0; // The reason to jump is to start a new loop or track
   2286         ctx->tempo =ctx->default_tempo; // reset to file default value
   2287         ctx->bpm = ctx->default_bpm; // reset to file default value
   2288         ctx->global_volume = ctx->default_global_volume; // reset to file default value
   2289     };
   2290 }
   2291 
   2292 
   2293 // TRANSLATE NOTE NUMBER INTO USER VALUE (ie. 1 = C-1, 2 = C#1, 3 = D-1 ... )
   2294 const char* xm_note_chr(int number) {
   2295     if (number == NOTE_OFF) {
   2296         return "==";
   2297     };
   2298     number = number % 12;
   2299     switch(number) {
   2300     case 1: return "C-";
   2301     case 2: return "C#";
   2302     case 3: return "D-";
   2303     case 4: return "D#";
   2304     case 5: return "E-";
   2305     case 6: return "F-";
   2306     case 7: return "F#";
   2307     case 8: return "G-";
   2308     case 9: return "G#";
   2309     case 10: return "A-";
   2310     case 11: return "A#";
   2311     case 12: return "B-";
   2312     };
   2313     return "??";
   2314 };
   2315 
   2316 const char* xm_octave_chr(int number) {
   2317     if (number == NOTE_OFF) {
   2318         return "=";
   2319     };
   2320 
   2321     int number2 = number - number % 12;
   2322     int result = floor(number2 / 12) + 1;
   2323     switch(result) {
   2324     case 1: return "1";
   2325     case 2: return "2";
   2326     case 3: return "3";
   2327     case 4: return "4";
   2328     case 5: return "5";
   2329     case 6: return "6";
   2330     case 7: return "7";
   2331     case 8: return "8";
   2332     default: return "?"; /* UNKNOWN */
   2333     };
   2334 
   2335 };
   2336 
   2337 // TRANSLATE NOTE EFFECT CODE INTO USER VALUE
   2338 const char* xm_effect_chr(int fx) {
   2339     switch(fx) {
   2340     case 0: return "0";  /* ZERO = NO EFFECT */
   2341     case 1: return "1";  /* 1xx: Portamento up */
   2342     case 2: return "2";  /* 2xx: Portamento down */
   2343     case 3: return "3";  /* 3xx: Tone portamento */
   2344     case 4: return "4";  /* 4xy: Vibrato */
   2345     case 5: return "5";  /* 5xy: Tone portamento + Volume slide */
   2346     case 6: return "6";  /* 6xy: Vibrato + Volume slide */
   2347     case 7: return "7";  /* 7xy: Tremolo */
   2348     case 8: return "8";  /* 8xx: Set panning */
   2349     case 9: return "9";  /* 9xx: Sample offset */
   2350     case 0xA: return "A";/* Axy: Volume slide */
   2351     case 0xB: return "B";/* Bxx: Position jump */
   2352     case 0xC: return "C";/* Cxx: Set volume */
   2353     case 0xD: return "D";/* Dxx: Pattern break */
   2354     case 0xE: return "E";/* EXy: Extended command */
   2355     case 0xF: return "F";/* Fxx: Set tempo/BPM */
   2356     case 16: return "G"; /* Gxx: Set global volume */
   2357     case 17: return "H"; /* Hxy: Global volume slide */
   2358     case 21: return "L"; /* Lxx: Set envelope position */
   2359     case 25: return "P"; /* Pxy: Panning slide */
   2360     case 27: return "R"; /* Rxy: Multi retrig note */
   2361     case 29: return "T"; /* Txy: Tremor */
   2362     case 33: return "X"; /* Xxy: Extra stuff */
   2363     default: return "?"; /* UNKNOWN */
   2364     };
   2365 }
   2366 
   2367 #ifdef JAR_XM_RAYLIB
   2368 
   2369 #include "raylib.h" // Need RayLib API calls for the DEBUG display
   2370 
   2371 void jar_xm_debug(jar_xm_context_t *ctx) {
   2372     int size=40;
   2373     int x = 0, y = 0;
   2374 
   2375     // DEBUG VARIABLES
   2376     y += size; DrawText(TextFormat("CUR TBL = %i", ctx->current_table_index),       x, y, size, WHITE);
   2377     y += size; DrawText(TextFormat("CUR PAT = %i", ctx->module.pattern_table[ctx->current_table_index]),   x, y, size, WHITE);
   2378     y += size; DrawText(TextFormat("POS JMP = %d", ctx->position_jump),             x, y, size, WHITE);
   2379     y += size; DrawText(TextFormat("JMP DST = %i", ctx->jump_dest),                 x, y, size, WHITE);
   2380     y += size; DrawText(TextFormat("PTN BRK = %d", ctx->pattern_break),             x, y, size, WHITE);
   2381     y += size; DrawText(TextFormat("CUR ROW = %i", ctx->current_row),               x, y, size, WHITE);
   2382     y += size; DrawText(TextFormat("JMP ROW = %i", ctx->jump_row),                  x, y, size, WHITE);
   2383     y += size; DrawText(TextFormat("ROW LCT = %i", ctx->row_loop_count),            x, y, size, WHITE);
   2384     y += size; DrawText(TextFormat("LCT     = %i", ctx->loop_count),                x, y, size, WHITE);
   2385     y += size; DrawText(TextFormat("MAX LCT = %i", ctx->max_loop_count),            x, y, size, WHITE);
   2386     x = size * 12; y = 0;
   2387 
   2388     y += size; DrawText(TextFormat("CUR TCK = %i", ctx->current_tick),              x, y, size, WHITE);
   2389     y += size; DrawText(TextFormat("XTR TCK = %i", ctx->extra_ticks),               x, y, size, WHITE);
   2390     y += size; DrawText(TextFormat("TCK/ROW = %i", ctx->tempo),                     x, y, size, ORANGE);
   2391     y += size; DrawText(TextFormat("SPL TCK = %f", ctx->remaining_samples_in_tick), x, y, size, WHITE);
   2392     y += size; DrawText(TextFormat("GEN SPL = %i", ctx->generated_samples),         x, y, size, WHITE);
   2393     y += size * 7;
   2394 
   2395     x = 0;
   2396     size=16;
   2397     // TIMELINE OF MODULE
   2398     for (int i=0; i < ctx->module.length; i++) {
   2399         if (i == ctx->jump_dest) {
   2400             if (ctx->position_jump) {
   2401                 DrawRectangle(i * size * 2, y - size, size * 2, size, GOLD);
   2402             } else {
   2403                 DrawRectangle(i * size * 2, y - size, size * 2, size, BROWN);
   2404             };
   2405         };
   2406         if (i == ctx->current_table_index) {
   2407 //            DrawText(TextFormat("%02X", ctx->current_tick), i * size * 2, y - size, size, WHITE);
   2408             DrawRectangle(i * size * 2, y, size * 2, size, RED);
   2409             DrawText(TextFormat("%02X", ctx->current_row), i * size * 2, y - size, size, YELLOW);
   2410         } else {
   2411             DrawRectangle(i * size * 2, y, size * 2, size, ORANGE);
   2412         };
   2413         DrawText(TextFormat("%02X", ctx->module.pattern_table[i]), i * size * 2, y, size, WHITE);
   2414     };
   2415     y += size;
   2416 
   2417     jar_xm_pattern_t* cur = ctx->module.patterns + ctx->module.pattern_table[ctx->current_table_index];
   2418 
   2419     /* DISPLAY CURRENTLY PLAYING PATTERN */
   2420 
   2421     x += 2 * size;
   2422     for(uint8_t i = 0; i < ctx->module.num_channels; i++) {
   2423         DrawRectangle(x, y, 8 * size, size, PURPLE);
   2424         DrawText("N", x, y, size, YELLOW);
   2425         DrawText("I", x + size * 2, y, size, YELLOW);
   2426         DrawText("V", x + size * 4, y, size, YELLOW);
   2427         DrawText("FX", x + size * 6, y, size, YELLOW);
   2428         x += 9 * size;
   2429     };
   2430     x += size;
   2431     for (int j=(ctx->current_row - 14); j<(ctx->current_row + 15); j++) {
   2432         y += size;
   2433         x = 0;
   2434         if (j >=0 && j < (cur->num_rows)) {
   2435             DrawRectangle(x, y, size * 2, size, BROWN);
   2436             DrawText(TextFormat("%02X",j), x, y, size, WHITE);
   2437             x += 2 * size;
   2438             for(uint8_t i = 0; i < ctx->module.num_channels; i++) {
   2439                 if (j==(ctx->current_row)) {
   2440                     DrawRectangle(x, y, 8 * size, size, DARKGREEN);
   2441                 } else {
   2442                     DrawRectangle(x, y, 8 * size, size, DARKGRAY);
   2443                 };
   2444                 jar_xm_pattern_slot_t *s = cur->slots + j * ctx->module.num_channels + i;
   2445            //     jar_xm_channel_context_t *ch = ctx->channels + i;
   2446                 if (s->note > 0) {DrawText(TextFormat("%s%s", xm_note_chr(s->note), xm_octave_chr(s->note) ), x, y, size, WHITE);} else {DrawText("...", x, y, size, GRAY);};
   2447                 if (s->instrument > 0) {
   2448                     DrawText(TextFormat("%02X", s->instrument), x + size * 2, y, size, WHITE);
   2449                     if (s->volume_column == 0) {
   2450                         DrawText(TextFormat("%02X", 64), x + size * 4, y, size, YELLOW);
   2451                     };
   2452                 } else {
   2453                     DrawText("..", x + size * 2, y, size, GRAY);
   2454                     if (s->volume_column == 0) {
   2455                         DrawText("..", x + size * 4, y, size, GRAY);
   2456                     };
   2457                 };
   2458                 if (s->volume_column > 0) {DrawText(TextFormat("%02X", (s->volume_column - 16)), x + size * 4, y, size, WHITE);};
   2459                 if (s->effect_type > 0 || s->effect_param > 0) {DrawText(TextFormat("%s%02X", xm_effect_chr(s->effect_type), s->effect_param), x + size * 6, y, size, WHITE);};
   2460                 x += 9 * size;
   2461             };
   2462         };
   2463     };
   2464 
   2465 }
   2466 #endif // RayLib extension
   2467 
   2468 #endif//end of JAR_XM_IMPLEMENTATION
   2469 //-------------------------------------------------------------------------------
   2470 
   2471 #endif//end of INCLUDE_JAR_XM_H