jar_xm.h (101770B)
1 // jar_xm.h 2 // 3 // ORIGINAL LICENSE - FOR LIBXM: 4 // 5 // Author: Romain "Artefact2" Dalmaso <artefact2@gmail.com> 6 // Contributor: Dan Spencer <dan@atomicpotato.net> 7 // Repackaged into jar_xm.h By: Joshua Adam Reisenauer <kd7tck@gmail.com> 8 // This program is free software. It comes without any warranty, to the 9 // extent permitted by applicable law. You can redistribute it and/or 10 // modify it under the terms of the Do What The Fuck You Want To Public 11 // License, Version 2, as published by Sam Hocevar. See 12 // http://sam.zoy.org/wtfpl/COPYING for more details. 13 // 14 // HISTORY: 15 // v0.1.0 2016-02-22 jar_xm.h - development by Joshua Reisenauer, MAR 2016 16 // v0.2.1 2021-03-07 m4ntr0n1c: Fix clipping noise for "bad" xm's (they will always clip), avoid clip noise and just put a ceiling) 17 // v0.2.2 2021-03-09 m4ntr0n1c: Add complete debug solution (raylib.h must be included) 18 // v0.2.3 2021-03-11 m4ntr0n1c: Fix tempo, bpm and volume on song stop / start / restart / loop 19 // v0.2.4 2021-03-17 m4ntr0n1c: Sanitize code for readability 20 // v0.2.5 2021-03-22 m4ntr0n1c: Minor adjustments 21 // v0.2.6 2021-04-01 m4ntr0n1c: Minor fixes and optimisation 22 // v0.3.0 2021-04-03 m4ntr0n1c: Addition of Stereo sample support, Linear Interpolation and Ramping now addressable options in code 23 // v0.3.1 2021-04-04 m4ntr0n1c: Volume effects column adjustments, sample offset handling adjustments 24 // 25 // USAGE: 26 // 27 // In ONE source file, put: 28 // 29 // #define JAR_XM_IMPLEMENTATION 30 // #include "jar_xm.h" 31 // 32 // Other source files should just include jar_xm.h 33 // 34 // SAMPLE CODE: 35 // 36 // jar_xm_context_t *musicptr; 37 // float musicBuffer[48000 / 60]; 38 // int intro_load(void) 39 // { 40 // jar_xm_create_context_from_file(&musicptr, 48000, "Song.XM"); 41 // return 1; 42 // } 43 // int intro_unload(void) 44 // { 45 // jar_xm_free_context(musicptr); 46 // return 1; 47 // } 48 // int intro_tick(long counter) 49 // { 50 // jar_xm_generate_samples(musicptr, musicBuffer, (48000 / 60) / 2); 51 // if(IsKeyDown(KEY_ENTER)) 52 // return 1; 53 // return 0; 54 // } 55 // 56 #ifndef INCLUDE_JAR_XM_H 57 #define INCLUDE_JAR_XM_H 58 59 #include <stdint.h> 60 61 #define JAR_XM_DEBUG 0 62 #define JAR_XM_DEFENSIVE 1 63 //#define JAR_XM_RAYLIB 0 // set to 0 to disable the RayLib visualizer extension 64 65 // Allow custom memory allocators 66 #ifndef JARXM_MALLOC 67 #define JARXM_MALLOC(sz) malloc(sz) 68 #endif 69 #ifndef JARXM_FREE 70 #define JARXM_FREE(p) free(p) 71 #endif 72 73 //------------------------------------------------------------------------------- 74 struct jar_xm_context_s; 75 typedef struct jar_xm_context_s jar_xm_context_t; 76 77 #ifdef __cplusplus 78 extern "C" { 79 #endif 80 81 //** Create a XM context. 82 // * @param moddata the contents of the module 83 // * @param rate play rate in Hz, recommended value of 48000 84 // * @returns 0 on success 85 // * @returns 1 if module data is not sane 86 // * @returns 2 if memory allocation failed 87 // * @returns 3 unable to open input file 88 // * @returns 4 fseek() failed 89 // * @returns 5 fread() failed 90 // * @returns 6 unkown error 91 // * @deprecated This function is unsafe! 92 // * @see jar_xm_create_context_safe() 93 int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const char* filename); 94 95 //** Create a XM context. 96 // * @param moddata the contents of the module 97 // * @param rate play rate in Hz, recommended value of 48000 98 // * @returns 0 on success 99 // * @returns 1 if module data is not sane 100 // * @returns 2 if memory allocation failed 101 // * @deprecated This function is unsafe! 102 // * @see jar_xm_create_context_safe() 103 int jar_xm_create_context(jar_xm_context_t** ctx, const char* moddata, uint32_t rate); 104 105 //** Create a XM context. 106 // * @param moddata the contents of the module 107 // * @param moddata_length the length of the contents of the module, in bytes 108 // * @param rate play rate in Hz, recommended value of 48000 109 // * @returns 0 on success 110 // * @returns 1 if module data is not sane 111 // * @returns 2 if memory allocation failed 112 int jar_xm_create_context_safe(jar_xm_context_t** ctx, const char* moddata, size_t moddata_length, uint32_t rate); 113 114 //** Free a XM context created by jar_xm_create_context(). */ 115 void jar_xm_free_context(jar_xm_context_t* ctx); 116 117 //** Play the module and put the sound samples in an output buffer. 118 // * @param output buffer of 2*numsamples elements (A left and right value for each sample) 119 // * @param numsamples number of samples to generate 120 void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples); 121 122 //** Play the module, resample from float to 16 bit, and put the sound samples in an output buffer. 123 // * @param output buffer of 2*numsamples elements (A left and right value for each sample) 124 // * @param numsamples number of samples to generate 125 void jar_xm_generate_samples_16bit(jar_xm_context_t* ctx, short* output, size_t numsamples) { 126 float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float)); 127 jar_xm_generate_samples(ctx, musicBuffer, numsamples); 128 129 if(output){ 130 for(int x=0;x<2*numsamples;x++) output[x] = (musicBuffer[x] * 32767.0f); // scale sample to signed small int 131 } 132 JARXM_FREE(musicBuffer); 133 } 134 135 //** Play the module, resample from float to 8 bit, and put the sound samples in an output buffer. 136 // * @param output buffer of 2*numsamples elements (A left and right value for each sample) 137 // * @param numsamples number of samples to generate 138 void jar_xm_generate_samples_8bit(jar_xm_context_t* ctx, char* output, size_t numsamples) { 139 float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float)); 140 jar_xm_generate_samples(ctx, musicBuffer, numsamples); 141 142 if(output){ 143 for(int x=0;x<2*numsamples;x++) output[x] = (musicBuffer[x] * 127.0f); // scale sample to signed 8 bit 144 } 145 JARXM_FREE(musicBuffer); 146 } 147 148 //** Set the maximum number of times a module can loop. After the specified number of loops, calls to jar_xm_generate_samples will only generate silence. You can control the current number of loops with jar_xm_get_loop_count(). 149 // * @param loopcnt maximum number of loops. Use 0 to loop indefinitely. 150 void jar_xm_set_max_loop_count(jar_xm_context_t* ctx, uint8_t loopcnt); 151 152 //** Get the loop count of the currently playing module. This value is 0 when the module is still playing, 1 when the module has looped once, etc. 153 uint8_t jar_xm_get_loop_count(jar_xm_context_t* ctx); 154 155 //** Mute or unmute a channel. 156 // * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...). 157 // * @return whether the channel was muted. 158 bool jar_xm_mute_channel(jar_xm_context_t* ctx, uint16_t, bool); 159 160 //** Mute or unmute an instrument. 161 // * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). 162 // * @return whether the instrument was muted. 163 bool jar_xm_mute_instrument(jar_xm_context_t* ctx, uint16_t, bool); 164 165 //** Get the module name as a NUL-terminated string. 166 const char* jar_xm_get_module_name(jar_xm_context_t* ctx); 167 168 //** Get the tracker name as a NUL-terminated string. 169 const char* jar_xm_get_tracker_name(jar_xm_context_t* ctx); 170 171 //** Get the number of channels. 172 uint16_t jar_xm_get_number_of_channels(jar_xm_context_t* ctx); 173 174 //** Get the module length (in patterns). 175 uint16_t jar_xm_get_module_length(jar_xm_context_t*); 176 177 //** Get the number of patterns. 178 uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t* ctx); 179 180 //** Get the number of rows of a pattern. 181 // * @note Pattern numbers go from 0 to jar_xm_get_number_of_patterns(...)-1. 182 uint16_t jar_xm_get_number_of_rows(jar_xm_context_t* ctx, uint16_t); 183 184 //** Get the number of instruments. 185 uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t* ctx); 186 187 //** Get the number of samples of an instrument. 188 // * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). 189 uint16_t jar_xm_get_number_of_samples(jar_xm_context_t* ctx, uint16_t); 190 191 //** Get the current module speed. 192 // * @param bpm will receive the current BPM 193 // * @param tempo will receive the current tempo (ticks per line) 194 void jar_xm_get_playing_speed(jar_xm_context_t* ctx, uint16_t* bpm, uint16_t* tempo); 195 196 //** Get the current position in the module being played. 197 // * @param pattern_index if not NULL, will receive the current pattern index in the POT (pattern order table) 198 // * @param pattern if not NULL, will receive the current pattern number 199 // * @param row if not NULL, will receive the current row 200 // * @param samples if not NULL, will receive the total number of 201 // * generated samples (divide by sample rate to get seconds of generated audio) 202 void jar_xm_get_position(jar_xm_context_t* ctx, uint8_t* pattern_index, uint8_t* pattern, uint8_t* row, uint64_t* samples); 203 204 //** Get the latest time (in number of generated samples) when a particular instrument was triggered in any channel. 205 // * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). 206 uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t* ctx, uint16_t); 207 208 //** Get the latest time (in number of generated samples) when a particular sample was triggered in any channel. 209 // * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). 210 // * @note Sample numbers go from 0 to jar_xm_get_nubmer_of_samples(...,instr)-1. 211 uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t* ctx, uint16_t instr, uint16_t sample); 212 213 //** Get the latest time (in number of generated samples) when any instrument was triggered in a given channel. 214 // * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...). 215 uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t* ctx, uint16_t); 216 217 //** Get the number of remaining samples. Divide by 2 to get the number of individual LR data samples. 218 // * @note This is the remaining number of samples before the loop starts module again, or halts if on last pass. 219 // * @note This function is very slow and should only be run once, if at all. 220 uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx); 221 222 #ifdef __cplusplus 223 } 224 #endif 225 //------------------------------------------------------------------------------- 226 227 #ifdef JAR_XM_IMPLEMENTATION 228 229 #include <math.h> 230 #include <stdio.h> 231 #include <stdlib.h> 232 #include <limits.h> 233 #include <string.h> 234 235 #if JAR_XM_DEBUG //JAR_XM_DEBUG defined as 0 236 #include <stdio.h> 237 #define DEBUG(fmt, ...) do { \ 238 fprintf(stderr, "%s(): " fmt "\n", __func__, __VA_ARGS__); \ 239 fflush(stderr); \ 240 } while(0) 241 #else 242 #define DEBUG(...) 243 #endif 244 245 #if jar_xm_BIG_ENDIAN 246 #error "Big endian platforms are not yet supported, sorry" 247 /* Make sure the compiler stops, even if #error is ignored */ 248 extern int __fail[-1]; 249 #endif 250 251 /* ----- XM constants ----- */ 252 #define SAMPLE_NAME_LENGTH 22 253 #define INSTRUMENT_NAME_LENGTH 22 254 #define MODULE_NAME_LENGTH 20 255 #define TRACKER_NAME_LENGTH 20 256 #define PATTERN_ORDER_TABLE_LENGTH 256 257 #define NUM_NOTES 96 // from 1 to 96, where 1 = C-0 258 #define NUM_ENVELOPE_POINTS 12 // to be verified if 12 is the max 259 #define MAX_NUM_ROWS 256 260 261 #define jar_xm_SAMPLE_RAMPING_POINTS 8 262 263 /* ----- Data types ----- */ 264 265 enum jar_xm_waveform_type_e { 266 jar_xm_SINE_WAVEFORM = 0, 267 jar_xm_RAMP_DOWN_WAVEFORM = 1, 268 jar_xm_SQUARE_WAVEFORM = 2, 269 jar_xm_RANDOM_WAVEFORM = 3, 270 jar_xm_RAMP_UP_WAVEFORM = 4, 271 }; 272 typedef enum jar_xm_waveform_type_e jar_xm_waveform_type_t; 273 274 enum jar_xm_loop_type_e { 275 jar_xm_NO_LOOP, 276 jar_xm_FORWARD_LOOP, 277 jar_xm_PING_PONG_LOOP, 278 }; 279 typedef enum jar_xm_loop_type_e jar_xm_loop_type_t; 280 281 enum jar_xm_frequency_type_e { 282 jar_xm_LINEAR_FREQUENCIES, 283 jar_xm_AMIGA_FREQUENCIES, 284 }; 285 typedef enum jar_xm_frequency_type_e jar_xm_frequency_type_t; 286 287 struct jar_xm_envelope_point_s { 288 uint16_t frame; 289 uint16_t value; 290 }; 291 typedef struct jar_xm_envelope_point_s jar_xm_envelope_point_t; 292 293 struct jar_xm_envelope_s { 294 jar_xm_envelope_point_t points[NUM_ENVELOPE_POINTS]; 295 uint8_t num_points; 296 uint8_t sustain_point; 297 uint8_t loop_start_point; 298 uint8_t loop_end_point; 299 bool enabled; 300 bool sustain_enabled; 301 bool loop_enabled; 302 }; 303 typedef struct jar_xm_envelope_s jar_xm_envelope_t; 304 305 struct jar_xm_sample_s { 306 char name[SAMPLE_NAME_LENGTH + 1]; 307 int8_t bits; /* Either 8 or 16 */ 308 int8_t stereo; 309 uint32_t length; 310 uint32_t loop_start; 311 uint32_t loop_length; 312 uint32_t loop_end; 313 float volume; 314 int8_t finetune; 315 jar_xm_loop_type_t loop_type; 316 float panning; 317 int8_t relative_note; 318 uint64_t latest_trigger; 319 320 float* data; 321 }; 322 typedef struct jar_xm_sample_s jar_xm_sample_t; 323 324 struct jar_xm_instrument_s { 325 char name[INSTRUMENT_NAME_LENGTH + 1]; 326 uint16_t num_samples; 327 uint8_t sample_of_notes[NUM_NOTES]; 328 jar_xm_envelope_t volume_envelope; 329 jar_xm_envelope_t panning_envelope; 330 jar_xm_waveform_type_t vibrato_type; 331 uint8_t vibrato_sweep; 332 uint8_t vibrato_depth; 333 uint8_t vibrato_rate; 334 uint16_t volume_fadeout; 335 uint64_t latest_trigger; 336 bool muted; 337 338 jar_xm_sample_t* samples; 339 }; 340 typedef struct jar_xm_instrument_s jar_xm_instrument_t; 341 342 struct jar_xm_pattern_slot_s { 343 uint8_t note; /* 1-96, 97 = Key Off note */ 344 uint8_t instrument; /* 1-128 */ 345 uint8_t volume_column; 346 uint8_t effect_type; 347 uint8_t effect_param; 348 }; 349 typedef struct jar_xm_pattern_slot_s jar_xm_pattern_slot_t; 350 351 struct jar_xm_pattern_s { 352 uint16_t num_rows; 353 jar_xm_pattern_slot_t* slots; /* Array of size num_rows * num_channels */ 354 }; 355 typedef struct jar_xm_pattern_s jar_xm_pattern_t; 356 357 struct jar_xm_module_s { 358 char name[MODULE_NAME_LENGTH + 1]; 359 char trackername[TRACKER_NAME_LENGTH + 1]; 360 uint16_t length; 361 uint16_t restart_position; 362 uint16_t num_channels; 363 uint16_t num_patterns; 364 uint16_t num_instruments; 365 uint16_t linear_interpolation; 366 uint16_t ramping; 367 jar_xm_frequency_type_t frequency_type; 368 uint8_t pattern_table[PATTERN_ORDER_TABLE_LENGTH]; 369 370 jar_xm_pattern_t* patterns; 371 jar_xm_instrument_t* instruments; /* Instrument 1 has index 0, instrument 2 has index 1, etc. */ 372 }; 373 typedef struct jar_xm_module_s jar_xm_module_t; 374 375 struct jar_xm_channel_context_s { 376 float note; 377 float orig_note; /* The original note before effect modifications, as read in the pattern. */ 378 jar_xm_instrument_t* instrument; /* Could be NULL */ 379 jar_xm_sample_t* sample; /* Could be NULL */ 380 jar_xm_pattern_slot_t* current; 381 382 float sample_position; 383 float period; 384 float frequency; 385 float step; 386 bool ping; /* For ping-pong samples: true is -->, false is <-- */ 387 388 float volume; /* Ideally between 0 (muted) and 1 (loudest) */ 389 float panning; /* Between 0 (left) and 1 (right); 0.5 is centered */ 390 391 uint16_t autovibrato_ticks; 392 393 bool sustained; 394 float fadeout_volume; 395 float volume_envelope_volume; 396 float panning_envelope_panning; 397 uint16_t volume_envelope_frame_count; 398 uint16_t panning_envelope_frame_count; 399 400 float autovibrato_note_offset; 401 402 bool arp_in_progress; 403 uint8_t arp_note_offset; 404 uint8_t volume_slide_param; 405 uint8_t fine_volume_slide_param; 406 uint8_t global_volume_slide_param; 407 uint8_t panning_slide_param; 408 uint8_t portamento_up_param; 409 uint8_t portamento_down_param; 410 uint8_t fine_portamento_up_param; 411 uint8_t fine_portamento_down_param; 412 uint8_t extra_fine_portamento_up_param; 413 uint8_t extra_fine_portamento_down_param; 414 uint8_t tone_portamento_param; 415 float tone_portamento_target_period; 416 uint8_t multi_retrig_param; 417 uint8_t note_delay_param; 418 uint8_t pattern_loop_origin; /* Where to restart a E6y loop */ 419 uint8_t pattern_loop_count; /* How many loop passes have been done */ 420 bool vibrato_in_progress; 421 jar_xm_waveform_type_t vibrato_waveform; 422 bool vibrato_waveform_retrigger; /* True if a new note retriggers the waveform */ 423 uint8_t vibrato_param; 424 uint16_t vibrato_ticks; /* Position in the waveform */ 425 float vibrato_note_offset; 426 jar_xm_waveform_type_t tremolo_waveform; 427 bool tremolo_waveform_retrigger; 428 uint8_t tremolo_param; 429 uint8_t tremolo_ticks; 430 float tremolo_volume; 431 uint8_t tremor_param; 432 bool tremor_on; 433 434 uint64_t latest_trigger; 435 bool muted; 436 437 //* These values are updated at the end of each tick, to save a couple of float operations on every generated sample. 438 float target_panning; 439 float target_volume; 440 441 unsigned long frame_count; 442 float end_of_previous_sample_left[jar_xm_SAMPLE_RAMPING_POINTS]; 443 float end_of_previous_sample_right[jar_xm_SAMPLE_RAMPING_POINTS]; 444 float curr_left; 445 float curr_right; 446 447 float actual_panning; 448 float actual_volume; 449 }; 450 typedef struct jar_xm_channel_context_s jar_xm_channel_context_t; 451 452 struct jar_xm_context_s { 453 void* allocated_memory; 454 jar_xm_module_t module; 455 uint32_t rate; 456 457 uint16_t default_tempo; // Number of ticks per row 458 uint16_t default_bpm; 459 float default_global_volume; 460 461 uint16_t tempo; // Number of ticks per row 462 uint16_t bpm; 463 float global_volume; 464 465 float volume_ramp; /* How much is a channel final volume allowed to change per sample; this is used to avoid abrubt volume changes which manifest as "clicks" in the generated sound. */ 466 float panning_ramp; /* Same for panning. */ 467 468 uint8_t current_table_index; 469 uint8_t current_row; 470 uint16_t current_tick; /* Can go below 255, with high tempo and a pattern delay */ 471 float remaining_samples_in_tick; 472 uint64_t generated_samples; 473 474 bool position_jump; 475 bool pattern_break; 476 uint8_t jump_dest; 477 uint8_t jump_row; 478 479 uint16_t extra_ticks; /* Extra ticks to be played before going to the next row - Used for EEy effect */ 480 481 uint8_t* row_loop_count; /* Array of size MAX_NUM_ROWS * module_length */ 482 uint8_t loop_count; 483 uint8_t max_loop_count; 484 485 jar_xm_channel_context_t* channels; 486 }; 487 488 #if JAR_XM_DEFENSIVE 489 490 //** Check the module data for errors/inconsistencies. 491 // * @returns 0 if everything looks OK. Module should be safe to load. 492 int jar_xm_check_sanity_preload(const char*, size_t); 493 494 //** Check a loaded module for errors/inconsistencies. 495 // * @returns 0 if everything looks OK. 496 int jar_xm_check_sanity_postload(jar_xm_context_t*); 497 498 #endif 499 500 //** Get the number of bytes needed to store the module data in a dynamically allocated blank context. 501 // * Things that are dynamically allocated: 502 // * - sample data 503 // * - sample structures in instruments 504 // * - pattern data 505 // * - row loop count arrays 506 // * - pattern structures in module 507 // * - instrument structures in module 508 // * - channel contexts 509 // * - context structure itself 510 // * @returns 0 if everything looks OK. 511 size_t jar_xm_get_memory_needed_for_context(const char*, size_t); 512 513 //** Populate the context from module data. 514 // * @returns pointer to the memory pool 515 char* jar_xm_load_module(jar_xm_context_t*, const char*, size_t, char*); 516 517 int jar_xm_create_context(jar_xm_context_t** ctxp, const char* moddata, uint32_t rate) { 518 return jar_xm_create_context_safe(ctxp, moddata, SIZE_MAX, rate); 519 } 520 521 #define ALIGN(x, b) (((x) + ((b) - 1)) & ~((b) - 1)) 522 #define ALIGN_PTR(x, b) (void*)(((uintptr_t)(x) + ((b) - 1)) & ~((b) - 1)) 523 int jar_xm_create_context_safe(jar_xm_context_t** ctxp, const char* moddata, size_t moddata_length, uint32_t rate) { 524 #if JAR_XM_DEFENSIVE 525 int ret; 526 #endif 527 size_t bytes_needed; 528 char* mempool; 529 jar_xm_context_t* ctx; 530 531 #if JAR_XM_DEFENSIVE 532 if((ret = jar_xm_check_sanity_preload(moddata, moddata_length))) { 533 DEBUG("jar_xm_check_sanity_preload() returned %i, module is not safe to load", ret); 534 return 1; 535 } 536 #endif 537 538 bytes_needed = jar_xm_get_memory_needed_for_context(moddata, moddata_length); 539 mempool = JARXM_MALLOC(bytes_needed); 540 if(mempool == NULL && bytes_needed > 0) { /* JARXM_MALLOC() failed, trouble ahead */ 541 DEBUG("call to JARXM_MALLOC() failed, returned %p", (void*)mempool); 542 return 2; 543 } 544 545 /* Initialize most of the fields to 0, 0.f, NULL or false depending on type */ 546 memset(mempool, 0, bytes_needed); 547 548 ctx = (*ctxp = (jar_xm_context_t *)mempool); 549 ctx->allocated_memory = mempool; /* Keep original pointer for JARXM_FREE() */ 550 mempool += sizeof(jar_xm_context_t); 551 552 ctx->rate = rate; 553 mempool = jar_xm_load_module(ctx, moddata, moddata_length, mempool); 554 mempool = ALIGN_PTR(mempool, 16); 555 556 ctx->channels = (jar_xm_channel_context_t*)mempool; 557 mempool += ctx->module.num_channels * sizeof(jar_xm_channel_context_t); 558 mempool = ALIGN_PTR(mempool, 16); 559 560 ctx->default_global_volume = 1.f; 561 ctx->global_volume = ctx->default_global_volume; 562 563 ctx->volume_ramp = (1.f / 128.f); 564 ctx->panning_ramp = (1.f / 128.f); 565 566 for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { 567 jar_xm_channel_context_t *ch = ctx->channels + i; 568 ch->ping = true; 569 ch->vibrato_waveform = jar_xm_SINE_WAVEFORM; 570 ch->vibrato_waveform_retrigger = true; 571 ch->tremolo_waveform = jar_xm_SINE_WAVEFORM; 572 ch->tremolo_waveform_retrigger = true; 573 ch->volume = ch->volume_envelope_volume = ch->fadeout_volume = 1.0f; 574 ch->panning = ch->panning_envelope_panning = .5f; 575 ch->actual_volume = .0f; 576 ch->actual_panning = .5f; 577 } 578 579 mempool = ALIGN_PTR(mempool, 16); 580 ctx->row_loop_count = (uint8_t *)mempool; 581 mempool += MAX_NUM_ROWS * sizeof(uint8_t); 582 583 #if JAR_XM_DEFENSIVE 584 if((ret = jar_xm_check_sanity_postload(ctx))) { DEBUG("jar_xm_check_sanity_postload() returned %i, module is not safe to play", ret); 585 jar_xm_free_context(ctx); 586 return 1; 587 } 588 #endif 589 590 return 0; 591 } 592 593 void jar_xm_free_context(jar_xm_context_t *ctx) { 594 if (ctx != NULL) { JARXM_FREE(ctx->allocated_memory); } 595 } 596 597 void jar_xm_set_max_loop_count(jar_xm_context_t *ctx, uint8_t loopcnt) { 598 ctx->max_loop_count = loopcnt; 599 } 600 601 uint8_t jar_xm_get_loop_count(jar_xm_context_t *ctx) { 602 return ctx->loop_count; 603 } 604 605 bool jar_xm_mute_channel(jar_xm_context_t *ctx, uint16_t channel, bool mute) { 606 bool old = ctx->channels[channel - 1].muted; 607 ctx->channels[channel - 1].muted = mute; 608 return old; 609 } 610 611 bool jar_xm_mute_instrument(jar_xm_context_t *ctx, uint16_t instr, bool mute) { 612 bool old = ctx->module.instruments[instr - 1].muted; 613 ctx->module.instruments[instr - 1].muted = mute; 614 return old; 615 } 616 617 const char* jar_xm_get_module_name(jar_xm_context_t *ctx) { 618 return ctx->module.name; 619 } 620 621 const char* jar_xm_get_tracker_name(jar_xm_context_t *ctx) { 622 return ctx->module.trackername; 623 } 624 625 uint16_t jar_xm_get_number_of_channels(jar_xm_context_t *ctx) { 626 return ctx->module.num_channels; 627 } 628 629 uint16_t jar_xm_get_module_length(jar_xm_context_t *ctx) { 630 return ctx->module.length; 631 } 632 633 uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t *ctx) { 634 return ctx->module.num_patterns; 635 } 636 637 uint16_t jar_xm_get_number_of_rows(jar_xm_context_t *ctx, uint16_t pattern) { 638 return ctx->module.patterns[pattern].num_rows; 639 } 640 641 uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t *ctx) { 642 return ctx->module.num_instruments; 643 } 644 645 uint16_t jar_xm_get_number_of_samples(jar_xm_context_t *ctx, uint16_t instrument) { 646 return ctx->module.instruments[instrument - 1].num_samples; 647 } 648 649 void jar_xm_get_playing_speed(jar_xm_context_t *ctx, uint16_t *bpm, uint16_t *tempo) { 650 if(bpm) *bpm = ctx->bpm; 651 if(tempo) *tempo = ctx->tempo; 652 } 653 654 void jar_xm_get_position(jar_xm_context_t *ctx, uint8_t *pattern_index, uint8_t *pattern, uint8_t *row, uint64_t *samples) { 655 if(pattern_index) *pattern_index = ctx->current_table_index; 656 if(pattern) *pattern = ctx->module.pattern_table[ctx->current_table_index]; 657 if(row) *row = ctx->current_row; 658 if(samples) *samples = ctx->generated_samples; 659 } 660 661 uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t *ctx, uint16_t instr) { 662 return ctx->module.instruments[instr - 1].latest_trigger; 663 } 664 665 uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t *ctx, uint16_t instr, uint16_t sample) { 666 return ctx->module.instruments[instr - 1].samples[sample].latest_trigger; 667 } 668 669 uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t *ctx, uint16_t chn) { 670 return ctx->channels[chn - 1].latest_trigger; 671 } 672 673 //* .xm files are little-endian. (XXX: Are they really?) 674 675 //* Bound reader macros. 676 //* If we attempt to read the buffer out-of-bounds, pretend that the buffer is infinitely padded with zeroes. 677 #define READ_U8(offset) (((offset) < moddata_length) ? (*(uint8_t*)(moddata + (offset))) : 0) 678 #define READ_U16(offset) ((uint16_t)READ_U8(offset) | ((uint16_t)READ_U8((offset) + 1) << 8)) 679 #define READ_U32(offset) ((uint32_t)READ_U16(offset) | ((uint32_t)READ_U16((offset) + 2) << 16)) 680 #define READ_MEMCPY(ptr, offset, length) memcpy_pad(ptr, length, moddata, moddata_length, offset) 681 682 static void memcpy_pad(void *dst, size_t dst_len, const void *src, size_t src_len, size_t offset) { 683 uint8_t *dst_c = dst; 684 const uint8_t *src_c = src; 685 686 /* how many bytes can be copied without overrunning `src` */ 687 size_t copy_bytes = (src_len >= offset) ? (src_len - offset) : 0; 688 copy_bytes = copy_bytes > dst_len ? dst_len : copy_bytes; 689 690 memcpy(dst_c, src_c + offset, copy_bytes); 691 /* padded bytes */ 692 memset(dst_c + copy_bytes, 0, dst_len - copy_bytes); 693 } 694 695 #if JAR_XM_DEFENSIVE 696 697 int jar_xm_check_sanity_preload(const char* module, size_t module_length) { 698 if(module_length < 60) { return 4; } 699 if(memcmp("Extended Module: ", module, 17) != 0) { return 1; } 700 if(module[37] != 0x1A) { return 2; } 701 if(module[59] != 0x01 || module[58] != 0x04) { return 3; } /* Not XM 1.04 */ 702 return 0; 703 } 704 705 int jar_xm_check_sanity_postload(jar_xm_context_t* ctx) { 706 /* Check the POT */ 707 for(uint8_t i = 0; i < ctx->module.length; ++i) { 708 if(ctx->module.pattern_table[i] >= ctx->module.num_patterns) { 709 if(i+1 == ctx->module.length && ctx->module.length > 1) { 710 DEBUG("trimming invalid POT at pos %X", i); 711 --ctx->module.length; 712 } else { 713 DEBUG("module has invalid POT, pos %X references nonexistent pattern %X", i, ctx->module.pattern_table[i]); 714 return 1; 715 } 716 } 717 } 718 719 return 0; 720 } 721 722 #endif 723 724 size_t jar_xm_get_memory_needed_for_context(const char* moddata, size_t moddata_length) { 725 size_t memory_needed = 0; 726 size_t offset = 60; /* 60 = Skip the first header */ 727 uint16_t num_channels; 728 uint16_t num_patterns; 729 uint16_t num_instruments; 730 731 /* Read the module header */ 732 num_channels = READ_U16(offset + 8); 733 num_patterns = READ_U16(offset + 10); 734 memory_needed += num_patterns * sizeof(jar_xm_pattern_t); 735 memory_needed = ALIGN(memory_needed, 16); 736 num_instruments = READ_U16(offset + 12); 737 memory_needed += num_instruments * sizeof(jar_xm_instrument_t); 738 memory_needed = ALIGN(memory_needed, 16); 739 memory_needed += MAX_NUM_ROWS * READ_U16(offset + 4) * sizeof(uint8_t); /* Module length */ 740 741 offset += READ_U32(offset); /* Header size */ 742 743 /* Read pattern headers */ 744 for(uint16_t i = 0; i < num_patterns; ++i) { 745 uint16_t num_rows; 746 num_rows = READ_U16(offset + 5); 747 memory_needed += num_rows * num_channels * sizeof(jar_xm_pattern_slot_t); 748 offset += READ_U32(offset) + READ_U16(offset + 7); /* Pattern header length + packed pattern data size */ 749 } 750 memory_needed = ALIGN(memory_needed, 16); 751 752 /* Read instrument headers */ 753 for(uint16_t i = 0; i < num_instruments; ++i) { 754 uint16_t num_samples; 755 uint32_t sample_header_size = 0; 756 uint32_t sample_size_aggregate = 0; 757 num_samples = READ_U16(offset + 27); 758 memory_needed += num_samples * sizeof(jar_xm_sample_t); 759 if(num_samples > 0) { sample_header_size = READ_U32(offset + 29); } 760 761 offset += READ_U32(offset); /* Instrument header size */ 762 for(uint16_t j = 0; j < num_samples; ++j) { 763 uint32_t sample_size; 764 uint8_t flags; 765 sample_size = READ_U32(offset); 766 flags = READ_U8(offset + 14); 767 sample_size_aggregate += sample_size; 768 769 if(flags & (1 << 4)) { /* 16 bit sample */ 770 memory_needed += sample_size * (sizeof(float) >> 1); 771 } else { /* 8 bit sample */ 772 memory_needed += sample_size * sizeof(float); 773 } 774 offset += sample_header_size; 775 } 776 offset += sample_size_aggregate; 777 } 778 779 memory_needed += num_channels * sizeof(jar_xm_channel_context_t); 780 memory_needed += sizeof(jar_xm_context_t); 781 return memory_needed; 782 } 783 784 char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t moddata_length, char* mempool) { 785 size_t offset = 0; 786 jar_xm_module_t* mod = &(ctx->module); 787 788 /* Read XM header */ 789 READ_MEMCPY(mod->name, offset + 17, MODULE_NAME_LENGTH); 790 READ_MEMCPY(mod->trackername, offset + 38, TRACKER_NAME_LENGTH); 791 offset += 60; 792 793 /* Read module header */ 794 uint32_t header_size = READ_U32(offset); 795 mod->length = READ_U16(offset + 4); 796 mod->restart_position = READ_U16(offset + 6); 797 mod->num_channels = READ_U16(offset + 8); 798 mod->num_patterns = READ_U16(offset + 10); 799 mod->num_instruments = READ_U16(offset + 12); 800 mod->patterns = (jar_xm_pattern_t*)mempool; 801 mod->linear_interpolation = 1; // Linear interpolation can be set after loading 802 mod->ramping = 1; // ramping can be set after loading 803 mempool += mod->num_patterns * sizeof(jar_xm_pattern_t); 804 mempool = ALIGN_PTR(mempool, 16); 805 mod->instruments = (jar_xm_instrument_t*)mempool; 806 mempool += mod->num_instruments * sizeof(jar_xm_instrument_t); 807 mempool = ALIGN_PTR(mempool, 16); 808 uint16_t flags = READ_U32(offset + 14); 809 mod->frequency_type = (flags & (1 << 0)) ? jar_xm_LINEAR_FREQUENCIES : jar_xm_AMIGA_FREQUENCIES; 810 ctx->default_tempo = READ_U16(offset + 16); 811 ctx->default_bpm = READ_U16(offset + 18); 812 ctx->tempo =ctx->default_tempo; 813 ctx->bpm = ctx->default_bpm; 814 815 READ_MEMCPY(mod->pattern_table, offset + 20, PATTERN_ORDER_TABLE_LENGTH); 816 offset += header_size; 817 818 /* Read patterns */ 819 for(uint16_t i = 0; i < mod->num_patterns; ++i) { 820 uint16_t packed_patterndata_size = READ_U16(offset + 7); 821 jar_xm_pattern_t* pat = mod->patterns + i; 822 pat->num_rows = READ_U16(offset + 5); 823 pat->slots = (jar_xm_pattern_slot_t*)mempool; 824 mempool += mod->num_channels * pat->num_rows * sizeof(jar_xm_pattern_slot_t); 825 offset += READ_U32(offset); /* Pattern header length */ 826 827 if(packed_patterndata_size == 0) { /* No pattern data is present */ 828 memset(pat->slots, 0, sizeof(jar_xm_pattern_slot_t) * pat->num_rows * mod->num_channels); 829 } else { 830 /* This isn't your typical for loop */ 831 for(uint16_t j = 0, k = 0; j < packed_patterndata_size; ++k) { 832 uint8_t note = READ_U8(offset + j); 833 jar_xm_pattern_slot_t* slot = pat->slots + k; 834 if(note & (1 << 7)) { 835 /* MSB is set, this is a compressed packet */ 836 ++j; 837 if(note & (1 << 0)) { /* Note follows */ 838 slot->note = READ_U8(offset + j); 839 ++j; 840 } else { 841 slot->note = 0; 842 } 843 if(note & (1 << 1)) { /* Instrument follows */ 844 slot->instrument = READ_U8(offset + j); 845 ++j; 846 } else { 847 slot->instrument = 0; 848 } 849 if(note & (1 << 2)) { /* Volume column follows */ 850 slot->volume_column = READ_U8(offset + j); 851 ++j; 852 } else { 853 slot->volume_column = 0; 854 } 855 if(note & (1 << 3)) { /* Effect follows */ 856 slot->effect_type = READ_U8(offset + j); 857 ++j; 858 } else { 859 slot->effect_type = 0; 860 } 861 if(note & (1 << 4)) { /* Effect parameter follows */ 862 slot->effect_param = READ_U8(offset + j); 863 ++j; 864 } else { 865 slot->effect_param = 0; 866 } 867 } else { /* Uncompressed packet */ 868 slot->note = note; 869 slot->instrument = READ_U8(offset + j + 1); 870 slot->volume_column = READ_U8(offset + j + 2); 871 slot->effect_type = READ_U8(offset + j + 3); 872 slot->effect_param = READ_U8(offset + j + 4); 873 j += 5; 874 } 875 } 876 } 877 878 offset += packed_patterndata_size; 879 } 880 mempool = ALIGN_PTR(mempool, 16); 881 882 /* Read instruments */ 883 for(uint16_t i = 0; i < ctx->module.num_instruments; ++i) { 884 uint32_t sample_header_size = 0; 885 jar_xm_instrument_t* instr = mod->instruments + i; 886 887 READ_MEMCPY(instr->name, offset + 4, INSTRUMENT_NAME_LENGTH); 888 instr->num_samples = READ_U16(offset + 27); 889 890 if(instr->num_samples > 0) { 891 /* Read extra header properties */ 892 sample_header_size = READ_U32(offset + 29); 893 READ_MEMCPY(instr->sample_of_notes, offset + 33, NUM_NOTES); 894 895 instr->volume_envelope.num_points = READ_U8(offset + 225); 896 instr->panning_envelope.num_points = READ_U8(offset + 226); 897 898 for(uint8_t j = 0; j < instr->volume_envelope.num_points; ++j) { 899 instr->volume_envelope.points[j].frame = READ_U16(offset + 129 + 4 * j); 900 instr->volume_envelope.points[j].value = READ_U16(offset + 129 + 4 * j + 2); 901 } 902 903 for(uint8_t j = 0; j < instr->panning_envelope.num_points; ++j) { 904 instr->panning_envelope.points[j].frame = READ_U16(offset + 177 + 4 * j); 905 instr->panning_envelope.points[j].value = READ_U16(offset + 177 + 4 * j + 2); 906 } 907 908 instr->volume_envelope.sustain_point = READ_U8(offset + 227); 909 instr->volume_envelope.loop_start_point = READ_U8(offset + 228); 910 instr->volume_envelope.loop_end_point = READ_U8(offset + 229); 911 instr->panning_envelope.sustain_point = READ_U8(offset + 230); 912 instr->panning_envelope.loop_start_point = READ_U8(offset + 231); 913 instr->panning_envelope.loop_end_point = READ_U8(offset + 232); 914 915 uint8_t flags = READ_U8(offset + 233); 916 instr->volume_envelope.enabled = flags & (1 << 0); 917 instr->volume_envelope.sustain_enabled = flags & (1 << 1); 918 instr->volume_envelope.loop_enabled = flags & (1 << 2); 919 920 flags = READ_U8(offset + 234); 921 instr->panning_envelope.enabled = flags & (1 << 0); 922 instr->panning_envelope.sustain_enabled = flags & (1 << 1); 923 instr->panning_envelope.loop_enabled = flags & (1 << 2); 924 instr->vibrato_type = READ_U8(offset + 235); 925 if(instr->vibrato_type == 2) { 926 instr->vibrato_type = 1; 927 } else if(instr->vibrato_type == 1) { 928 instr->vibrato_type = 2; 929 } 930 instr->vibrato_sweep = READ_U8(offset + 236); 931 instr->vibrato_depth = READ_U8(offset + 237); 932 instr->vibrato_rate = READ_U8(offset + 238); 933 instr->volume_fadeout = READ_U16(offset + 239); 934 instr->samples = (jar_xm_sample_t*)mempool; 935 mempool += instr->num_samples * sizeof(jar_xm_sample_t); 936 } else { 937 instr->samples = NULL; 938 } 939 940 /* Instrument header size */ 941 offset += READ_U32(offset); 942 943 for(int j = 0; j < instr->num_samples; ++j) { 944 /* Read sample header */ 945 jar_xm_sample_t* sample = instr->samples + j; 946 947 sample->length = READ_U32(offset); 948 sample->loop_start = READ_U32(offset + 4); 949 sample->loop_length = READ_U32(offset + 8); 950 sample->loop_end = sample->loop_start + sample->loop_length; 951 sample->volume = (float)(READ_U8(offset + 12) << 2) / 256.f; 952 if (sample->volume > 1.0f) {sample->volume = 1.f;}; 953 sample->finetune = (int8_t)READ_U8(offset + 13); 954 955 uint8_t flags = READ_U8(offset + 14); 956 switch (flags & 3) { 957 case 2: 958 case 3: 959 sample->loop_type = jar_xm_PING_PONG_LOOP; 960 case 1: 961 sample->loop_type = jar_xm_FORWARD_LOOP; 962 break; 963 default: 964 sample->loop_type = jar_xm_NO_LOOP; 965 break; 966 }; 967 sample->bits = (flags & 0x10) ? 16 : 8; 968 sample->stereo = (flags & 0x20) ? 1 : 0; 969 sample->panning = (float)READ_U8(offset + 15) / 255.f; 970 sample->relative_note = (int8_t)READ_U8(offset + 16); 971 READ_MEMCPY(sample->name, 18, SAMPLE_NAME_LENGTH); 972 sample->data = (float*)mempool; 973 if(sample->bits == 16) { 974 /* 16 bit sample */ 975 mempool += sample->length * (sizeof(float) >> 1); 976 sample->loop_start >>= 1; 977 sample->loop_length >>= 1; 978 sample->loop_end >>= 1; 979 sample->length >>= 1; 980 } else { 981 /* 8 bit sample */ 982 mempool += sample->length * sizeof(float); 983 } 984 // Adjust loop points to reflect half of the reported length (stereo) 985 if (sample->stereo && sample->loop_type != jar_xm_NO_LOOP) { 986 div_t lstart = div(READ_U32(offset + 4), 2); 987 sample->loop_start = lstart.quot; 988 div_t llength = div(READ_U32(offset + 8), 2); 989 sample->loop_length = llength.quot; 990 sample->loop_end = sample->loop_start + sample->loop_length; 991 }; 992 993 offset += sample_header_size; 994 } 995 996 // Read all samples and convert them to float values 997 for(int j = 0; j < instr->num_samples; ++j) { 998 /* Read sample data */ 999 jar_xm_sample_t* sample = instr->samples + j; 1000 int length = sample->length; 1001 if (sample->stereo) { 1002 // Since it is stereo, we cut the sample in half (treated as single channel) 1003 div_t result = div(sample->length, 2); 1004 if(sample->bits == 16) { 1005 int16_t v = 0; 1006 for(int k = 0; k < length; ++k) { 1007 if (k == result.quot) { v = 0;}; 1008 v = v + (int16_t)READ_U16(offset + (k << 1)); 1009 sample->data[k] = (float) v / 32768.f ;//* sign; 1010 if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; 1011 } 1012 offset += sample->length << 1; 1013 } else { 1014 int8_t v = 0; 1015 for(int k = 0; k < length; ++k) { 1016 if (k == result.quot) { v = 0;}; 1017 v = v + (int8_t)READ_U8(offset + k); 1018 sample->data[k] = (float)v / 128.f ;//* sign; 1019 if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; 1020 } 1021 offset += sample->length; 1022 }; 1023 sample->length = result.quot; 1024 } else { 1025 if(sample->bits == 16) { 1026 int16_t v = 0; 1027 for(int k = 0; k < length; ++k) { 1028 v = v + (int16_t)READ_U16(offset + (k << 1)); 1029 sample->data[k] = (float) v / 32768.f ;//* sign; 1030 if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; 1031 } 1032 offset += sample->length << 1; 1033 } else { 1034 int8_t v = 0; 1035 for(int k = 0; k < length; ++k) { 1036 v = v + (int8_t)READ_U8(offset + k); 1037 sample->data[k] = (float)v / 128.f ;//* sign; 1038 if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; 1039 } 1040 offset += sample->length; 1041 } 1042 } 1043 }; 1044 }; 1045 return mempool; 1046 }; 1047 1048 //------------------------------------------------------------------------------- 1049 //THE FOLLOWING IS FOR PLAYING 1050 static float jar_xm_waveform(jar_xm_waveform_type_t, uint8_t); 1051 static void jar_xm_autovibrato(jar_xm_context_t*, jar_xm_channel_context_t*); 1052 static void jar_xm_vibrato(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t); 1053 static void jar_xm_tremolo(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t); 1054 static void jar_xm_arpeggio(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t); 1055 static void jar_xm_tone_portamento(jar_xm_context_t*, jar_xm_channel_context_t*); 1056 static void jar_xm_pitch_slide(jar_xm_context_t*, jar_xm_channel_context_t*, float); 1057 static void jar_xm_panning_slide(jar_xm_channel_context_t*, uint8_t); 1058 static void jar_xm_volume_slide(jar_xm_channel_context_t*, uint8_t); 1059 1060 static float jar_xm_envelope_lerp(jar_xm_envelope_point_t*, jar_xm_envelope_point_t*, uint16_t); 1061 static void jar_xm_envelope_tick(jar_xm_channel_context_t*, jar_xm_envelope_t*, uint16_t*, float*); 1062 static void jar_xm_envelopes(jar_xm_channel_context_t*); 1063 1064 static float jar_xm_linear_period(float); 1065 static float jar_xm_linear_frequency(float); 1066 static float jar_xm_amiga_period(float); 1067 static float jar_xm_amiga_frequency(float); 1068 static float jar_xm_period(jar_xm_context_t*, float); 1069 static float jar_xm_frequency(jar_xm_context_t*, float, float); 1070 static void jar_xm_update_frequency(jar_xm_context_t*, jar_xm_channel_context_t*); 1071 1072 static void jar_xm_handle_note_and_instrument(jar_xm_context_t*, jar_xm_channel_context_t*, jar_xm_pattern_slot_t*); 1073 static void jar_xm_trigger_note(jar_xm_context_t*, jar_xm_channel_context_t*, unsigned int flags); 1074 static void jar_xm_cut_note(jar_xm_channel_context_t*); 1075 static void jar_xm_key_off(jar_xm_channel_context_t*); 1076 1077 static void jar_xm_post_pattern_change(jar_xm_context_t*); 1078 static void jar_xm_row(jar_xm_context_t*); 1079 static void jar_xm_tick(jar_xm_context_t*); 1080 1081 static void jar_xm_next_of_sample(jar_xm_context_t*, jar_xm_channel_context_t*, int); 1082 static void jar_xm_mixdown(jar_xm_context_t*, float*, float*); 1083 1084 #define jar_xm_TRIGGER_KEEP_VOLUME (1 << 0) 1085 #define jar_xm_TRIGGER_KEEP_PERIOD (1 << 1) 1086 #define jar_xm_TRIGGER_KEEP_SAMPLE_POSITION (1 << 2) 1087 1088 // C-2, C#2, D-2, D#2, E-2, F-2, F#2, G-2, G#2, A-2, A#2, B-2, C-3 1089 static const uint16_t amiga_frequencies[] = { 1712, 1616, 1525, 1440, 1357, 1281, 1209, 1141, 1077, 1017, 961, 907, 856 }; 1090 1091 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f 1092 static const float multi_retrig_add[] = { 0.f, -1.f, -2.f, -4.f, -8.f, -16.f, 0.f, 0.f, 0.f, 1.f, 2.f, 4.f, 8.f, 16.f, 0.f, 0.f }; 1093 1094 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f 1095 static const float multi_retrig_multiply[] = { 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, .6666667f, .5f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.5f, 2.f }; 1096 1097 #define jar_xm_CLAMP_UP1F(vol, limit) do { \ 1098 if((vol) > (limit)) (vol) = (limit); \ 1099 } while(0) 1100 #define jar_xm_CLAMP_UP(vol) jar_xm_CLAMP_UP1F((vol), 1.f) 1101 1102 #define jar_xm_CLAMP_DOWN1F(vol, limit) do { \ 1103 if((vol) < (limit)) (vol) = (limit); \ 1104 } while(0) 1105 #define jar_xm_CLAMP_DOWN(vol) jar_xm_CLAMP_DOWN1F((vol), .0f) 1106 1107 #define jar_xm_CLAMP2F(vol, up, down) do { \ 1108 if((vol) > (up)) (vol) = (up); \ 1109 else if((vol) < (down)) (vol) = (down); \ 1110 } while(0) 1111 #define jar_xm_CLAMP(vol) jar_xm_CLAMP2F((vol), 1.f, .0f) 1112 1113 #define jar_xm_SLIDE_TOWARDS(val, goal, incr) do { \ 1114 if((val) > (goal)) { \ 1115 (val) -= (incr); \ 1116 jar_xm_CLAMP_DOWN1F((val), (goal)); \ 1117 } else if((val) < (goal)) { \ 1118 (val) += (incr); \ 1119 jar_xm_CLAMP_UP1F((val), (goal)); \ 1120 } \ 1121 } while(0) 1122 1123 #define jar_xm_LERP(u, v, t) ((u) + (t) * ((v) - (u))) 1124 #define jar_xm_INVERSE_LERP(u, v, lerp) (((lerp) - (u)) / ((v) - (u))) 1125 1126 #define HAS_TONE_PORTAMENTO(s) ((s)->effect_type == 3 \ 1127 || (s)->effect_type == 5 \ 1128 || ((s)->volume_column >> 4) == 0xF) 1129 #define HAS_ARPEGGIO(s) ((s)->effect_type == 0 \ 1130 && (s)->effect_param != 0) 1131 #define HAS_VIBRATO(s) ((s)->effect_type == 4 \ 1132 || (s)->effect_param == 6 \ 1133 || ((s)->volume_column >> 4) == 0xB) 1134 #define NOTE_IS_VALID(n) ((n) > 0 && (n) < 97) 1135 #define NOTE_OFF 97 1136 1137 static float jar_xm_waveform(jar_xm_waveform_type_t waveform, uint8_t step) { 1138 static unsigned int next_rand = 24492; 1139 step %= 0x40; 1140 switch(waveform) { 1141 case jar_xm_SINE_WAVEFORM: /* No SIN() table used, direct calculation. */ 1142 return -sinf(2.f * 3.141592f * (float)step / (float)0x40); 1143 case jar_xm_RAMP_DOWN_WAVEFORM: /* Ramp down: 1.0f when step = 0; -1.0f when step = 0x40 */ 1144 return (float)(0x20 - step) / 0x20; 1145 case jar_xm_SQUARE_WAVEFORM: /* Square with a 50% duty */ 1146 return (step >= 0x20) ? 1.f : -1.f; 1147 case jar_xm_RANDOM_WAVEFORM: /* Use the POSIX.1-2001 example, just to be deterministic across different machines */ 1148 next_rand = next_rand * 1103515245 + 12345; 1149 return (float)((next_rand >> 16) & 0x7FFF) / (float)0x4000 - 1.f; 1150 case jar_xm_RAMP_UP_WAVEFORM: /* Ramp up: -1.f when step = 0; 1.f when step = 0x40 */ 1151 return (float)(step - 0x20) / 0x20; 1152 default: 1153 break; 1154 } 1155 return .0f; 1156 } 1157 1158 static void jar_xm_autovibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) { 1159 if(ch->instrument == NULL || ch->instrument->vibrato_depth == 0) return; 1160 jar_xm_instrument_t* instr = ch->instrument; 1161 float sweep = 1.f; 1162 if(ch->autovibrato_ticks < instr->vibrato_sweep) { sweep = jar_xm_LERP(0.f, 1.f, (float)ch->autovibrato_ticks / (float)instr->vibrato_sweep); } 1163 unsigned int step = ((ch->autovibrato_ticks++) * instr->vibrato_rate) >> 2; 1164 ch->autovibrato_note_offset = .25f * jar_xm_waveform(instr->vibrato_type, step) * (float)instr->vibrato_depth / (float)0xF * sweep; 1165 jar_xm_update_frequency(ctx, ch); 1166 } 1167 1168 static void jar_xm_vibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) { 1169 unsigned int step = pos * (param >> 4); 1170 ch->vibrato_note_offset = 2.f * jar_xm_waveform(ch->vibrato_waveform, step) * (float)(param & 0x0F) / (float)0xF; 1171 jar_xm_update_frequency(ctx, ch); 1172 } 1173 1174 static void jar_xm_tremolo(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) { 1175 unsigned int step = pos * (param >> 4); 1176 ch->tremolo_volume = -1.f * jar_xm_waveform(ch->tremolo_waveform, step) * (float)(param & 0x0F) / (float)0xF; 1177 } 1178 1179 static void jar_xm_arpeggio(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t tick) { 1180 switch(tick % 3) { 1181 case 0: 1182 ch->arp_in_progress = false; 1183 ch->arp_note_offset = 0; 1184 break; 1185 case 2: 1186 ch->arp_in_progress = true; 1187 ch->arp_note_offset = param >> 4; 1188 break; 1189 case 1: 1190 ch->arp_in_progress = true; 1191 ch->arp_note_offset = param & 0x0F; 1192 break; 1193 } 1194 jar_xm_update_frequency(ctx, ch); 1195 } 1196 1197 static void jar_xm_tone_portamento(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) { 1198 /* 3xx called without a note, wait until we get an actual target note. */ 1199 if(ch->tone_portamento_target_period == 0.f) return; /* no value, exit */ 1200 if(ch->period != ch->tone_portamento_target_period) { 1201 jar_xm_SLIDE_TOWARDS(ch->period, ch->tone_portamento_target_period, (ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES ? 4.f : 1.f) * ch->tone_portamento_param); 1202 jar_xm_update_frequency(ctx, ch); 1203 } 1204 } 1205 1206 static void jar_xm_pitch_slide(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, float period_offset) { 1207 /* Don't ask about the 4.f coefficient. I found mention of it nowhere. Found by ear. */ 1208 if(ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES) {period_offset *= 4.f; } 1209 ch->period += period_offset; 1210 jar_xm_CLAMP_DOWN(ch->period); 1211 /* XXX: upper bound of period ? */ 1212 jar_xm_update_frequency(ctx, ch); 1213 } 1214 1215 static void jar_xm_panning_slide(jar_xm_channel_context_t* ch, uint8_t rawval) { 1216 if (rawval & 0xF0) {ch->panning += (float)((rawval & 0xF0 )>> 4) / (float)0xFF;}; 1217 if (rawval & 0x0F) {ch->panning -= (float)(rawval & 0x0F) / (float)0xFF;}; 1218 }; 1219 1220 static void jar_xm_volume_slide(jar_xm_channel_context_t* ch, uint8_t rawval) { 1221 if (rawval & 0xF0) {ch->volume += (float)((rawval & 0xF0) >> 4) / (float)0x40;}; 1222 if (rawval & 0x0F) {ch->volume -= (float)(rawval & 0x0F) / (float)0x40;}; 1223 }; 1224 1225 static float jar_xm_envelope_lerp(jar_xm_envelope_point_t* a, jar_xm_envelope_point_t* b, uint16_t pos) { 1226 /* Linear interpolation between two envelope points */ 1227 if(pos <= a->frame) return a->value; 1228 else if(pos >= b->frame) return b->value; 1229 else { 1230 float p = (float)(pos - a->frame) / (float)(b->frame - a->frame); 1231 return a->value * (1 - p) + b->value * p; 1232 } 1233 } 1234 1235 static void jar_xm_post_pattern_change(jar_xm_context_t* ctx) { 1236 /* Loop if necessary */ 1237 if(ctx->current_table_index >= ctx->module.length) { 1238 ctx->current_table_index = ctx->module.restart_position; 1239 ctx->tempo =ctx->default_tempo; // reset to file default value 1240 ctx->bpm = ctx->default_bpm; // reset to file default value 1241 ctx->global_volume = ctx->default_global_volume; // reset to file default value 1242 } 1243 } 1244 1245 static float jar_xm_linear_period(float note) { 1246 return 7680.f - note * 64.f; 1247 } 1248 1249 static float jar_xm_linear_frequency(float period) { 1250 return 8363.f * powf(2.f, (4608.f - period) / 768.f); 1251 } 1252 1253 static float jar_xm_amiga_period(float note) { 1254 unsigned int intnote = note; 1255 uint8_t a = intnote % 12; 1256 int8_t octave = note / 12.f - 2; 1257 uint16_t p1 = amiga_frequencies[a], p2 = amiga_frequencies[a + 1]; 1258 if(octave > 0) { 1259 p1 >>= octave; 1260 p2 >>= octave; 1261 } else if(octave < 0) { 1262 p1 <<= -octave; 1263 p2 <<= -octave; 1264 } 1265 return jar_xm_LERP(p1, p2, note - intnote); 1266 } 1267 1268 static float jar_xm_amiga_frequency(float period) { 1269 if(period == .0f) return .0f; 1270 return 7093789.2f / (period * 2.f); /* This is the PAL value. (we could use the NTSC value also) */ 1271 } 1272 1273 static float jar_xm_period(jar_xm_context_t* ctx, float note) { 1274 switch(ctx->module.frequency_type) { 1275 case jar_xm_LINEAR_FREQUENCIES: 1276 return jar_xm_linear_period(note); 1277 case jar_xm_AMIGA_FREQUENCIES: 1278 return jar_xm_amiga_period(note); 1279 } 1280 return .0f; 1281 } 1282 1283 static float jar_xm_frequency(jar_xm_context_t* ctx, float period, float note_offset) { 1284 switch(ctx->module.frequency_type) { 1285 case jar_xm_LINEAR_FREQUENCIES: 1286 return jar_xm_linear_frequency(period - 64.f * note_offset); 1287 case jar_xm_AMIGA_FREQUENCIES: 1288 if(note_offset == 0) { return jar_xm_amiga_frequency(period); }; 1289 int8_t octave; 1290 float note; 1291 uint16_t p1, p2; 1292 uint8_t a = octave = 0; 1293 1294 /* Find the octave of the current period */ 1295 if(period > amiga_frequencies[0]) { 1296 --octave; 1297 while(period > (amiga_frequencies[0] << -octave)) --octave; 1298 } else if(period < amiga_frequencies[12]) { 1299 ++octave; 1300 while(period < (amiga_frequencies[12] >> octave)) ++octave; 1301 } 1302 1303 /* Find the smallest note closest to the current period */ 1304 for(uint8_t i = 0; i < 12; ++i) { 1305 p1 = amiga_frequencies[i], p2 = amiga_frequencies[i + 1]; 1306 if(octave > 0) { 1307 p1 >>= octave; 1308 p2 >>= octave; 1309 } else if(octave < 0) { 1310 p1 <<= (-octave); 1311 p2 <<= (-octave); 1312 } 1313 if(p2 <= period && period <= p1) { 1314 a = i; 1315 break; 1316 } 1317 } 1318 if(JAR_XM_DEBUG && (p1 < period || p2 > period)) { DEBUG("%i <= %f <= %i should hold but doesn't, this is a bug", p2, period, p1); } 1319 note = 12.f * (octave + 2) + a + jar_xm_INVERSE_LERP(p1, p2, period); 1320 return jar_xm_amiga_frequency(jar_xm_amiga_period(note + note_offset)); 1321 } 1322 1323 return .0f; 1324 } 1325 1326 static void jar_xm_update_frequency(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) { 1327 ch->frequency = jar_xm_frequency( ctx, ch->period, (ch->arp_note_offset > 0 ? ch->arp_note_offset : ( ch->vibrato_note_offset + ch->autovibrato_note_offset )) ); 1328 ch->step = ch->frequency / ctx->rate; 1329 } 1330 1331 static void jar_xm_handle_note_and_instrument(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, jar_xm_pattern_slot_t* s) { 1332 jar_xm_module_t* mod = &(ctx->module); 1333 if(s->instrument > 0) { 1334 if(HAS_TONE_PORTAMENTO(ch->current) && ch->instrument != NULL && ch->sample != NULL) { /* Tone portamento in effect */ 1335 jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_PERIOD | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION); 1336 } else if(s->instrument > ctx->module.num_instruments) { /* Invalid instrument, Cut current note */ 1337 jar_xm_cut_note(ch); 1338 ch->instrument = NULL; 1339 ch->sample = NULL; 1340 } else { 1341 ch->instrument = ctx->module.instruments + (s->instrument - 1); 1342 if(s->note == 0 && ch->sample != NULL) { /* Ghost instrument, trigger note */ 1343 /* Sample position is kept, but envelopes are reset */ 1344 jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_SAMPLE_POSITION); 1345 } 1346 } 1347 } 1348 1349 if(NOTE_IS_VALID(s->note)) { 1350 // note value is s->note -1 1351 jar_xm_instrument_t* instr = ch->instrument; 1352 if(HAS_TONE_PORTAMENTO(ch->current) && instr != NULL && ch->sample != NULL) { 1353 /* Tone portamento in effect */ 1354 ch->note = s->note + ch->sample->relative_note + ch->sample->finetune / 128.f - 1.f; 1355 ch->tone_portamento_target_period = jar_xm_period(ctx, ch->note); 1356 } else if(instr == NULL || ch->instrument->num_samples == 0) { /* Issue on instrument */ 1357 jar_xm_cut_note(ch); 1358 } else { 1359 if(instr->sample_of_notes[s->note - 1] < instr->num_samples) { 1360 if (mod->ramping) { 1361 for(int i = 0; i < jar_xm_SAMPLE_RAMPING_POINTS; ++i) { 1362 jar_xm_next_of_sample(ctx, ch, i); 1363 } 1364 ch->frame_count = 0; 1365 }; 1366 ch->sample = instr->samples + instr->sample_of_notes[s->note - 1]; 1367 ch->orig_note = ch->note = s->note + ch->sample->relative_note + ch->sample->finetune / 128.f - 1.f; 1368 if(s->instrument > 0) { 1369 jar_xm_trigger_note(ctx, ch, 0); 1370 } else { /* Ghost note: keep old volume */ 1371 jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_VOLUME); 1372 } 1373 } else { 1374 jar_xm_cut_note(ch); 1375 } 1376 } 1377 } else if(s->note == NOTE_OFF) { 1378 jar_xm_key_off(ch); 1379 } 1380 1381 // Interpret Effect column 1382 switch(s->effect_type) { 1383 case 1: /* 1xx: Portamento up */ 1384 if(s->effect_param > 0) { ch->portamento_up_param = s->effect_param; } 1385 break; 1386 case 2: /* 2xx: Portamento down */ 1387 if(s->effect_param > 0) { ch->portamento_down_param = s->effect_param; } 1388 break; 1389 case 3: /* 3xx: Tone portamento */ 1390 if(s->effect_param > 0) { ch->tone_portamento_param = s->effect_param; } 1391 break; 1392 case 4: /* 4xy: Vibrato */ 1393 if(s->effect_param & 0x0F) { ch->vibrato_param = (ch->vibrato_param & 0xF0) | (s->effect_param & 0x0F); } /* Set vibrato depth */ 1394 if(s->effect_param >> 4) { ch->vibrato_param = (s->effect_param & 0xF0) | (ch->vibrato_param & 0x0F); } /* Set vibrato speed */ 1395 break; 1396 case 5: /* 5xy: Tone portamento + Volume slide */ 1397 if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; } 1398 break; 1399 case 6: /* 6xy: Vibrato + Volume slide */ 1400 if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; } 1401 break; 1402 case 7: /* 7xy: Tremolo */ 1403 if(s->effect_param & 0x0F) { ch->tremolo_param = (ch->tremolo_param & 0xF0) | (s->effect_param & 0x0F); } /* Set tremolo depth */ 1404 if(s->effect_param >> 4) { ch->tremolo_param = (s->effect_param & 0xF0) | (ch->tremolo_param & 0x0F); } /* Set tremolo speed */ 1405 break; 1406 case 8: /* 8xx: Set panning */ 1407 ch->panning = (float)s->effect_param / 255.f; 1408 break; 1409 case 9: /* 9xx: Sample offset */ 1410 if(ch->sample != 0) { //&& NOTE_IS_VALID(s->note)) { 1411 uint32_t final_offset = s->effect_param << (ch->sample->bits == 16 ? 7 : 8); 1412 switch (ch->sample->loop_type) { 1413 case jar_xm_NO_LOOP: 1414 if(final_offset >= ch->sample->length) { /* Pretend the sample dosen't loop and is done playing */ 1415 ch->sample_position = -1; 1416 } else { 1417 ch->sample_position = final_offset; 1418 } 1419 break; 1420 case jar_xm_FORWARD_LOOP: 1421 if (final_offset >= ch->sample->loop_end) { 1422 ch->sample_position -= ch->sample->loop_length; 1423 } else if(final_offset >= ch->sample->length) { 1424 ch->sample_position = ch->sample->loop_start; 1425 } else { 1426 ch->sample_position = final_offset; 1427 } 1428 break; 1429 case jar_xm_PING_PONG_LOOP: 1430 if(final_offset >= ch->sample->loop_end) { 1431 ch->ping = false; 1432 ch->sample_position = (ch->sample->loop_end << 1) - ch->sample_position; 1433 } else if(final_offset >= ch->sample->length) { 1434 ch->ping = false; 1435 ch->sample_position -= ch->sample->length - 1; 1436 } else { 1437 ch->sample_position = final_offset; 1438 }; 1439 break; 1440 } 1441 } 1442 break; 1443 case 0xA: /* Axy: Volume slide */ 1444 if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; } 1445 break; 1446 case 0xB: /* Bxx: Position jump */ 1447 if(s->effect_param < ctx->module.length) { 1448 ctx->position_jump = true; 1449 ctx->jump_dest = s->effect_param; 1450 } 1451 break; 1452 case 0xC: /* Cxx: Set volume */ 1453 ch->volume = (float)((s->effect_param > 0x40) ? 0x40 : s->effect_param) / (float)0x40; 1454 break; 1455 case 0xD: /* Dxx: Pattern break */ 1456 /* Jump after playing this line */ 1457 ctx->pattern_break = true; 1458 ctx->jump_row = (s->effect_param >> 4) * 10 + (s->effect_param & 0x0F); 1459 break; 1460 case 0xE: /* EXy: Extended command */ 1461 switch(s->effect_param >> 4) { 1462 case 1: /* E1y: Fine portamento up */ 1463 if(s->effect_param & 0x0F) { ch->fine_portamento_up_param = s->effect_param & 0x0F; } 1464 jar_xm_pitch_slide(ctx, ch, -ch->fine_portamento_up_param); 1465 break; 1466 case 2: /* E2y: Fine portamento down */ 1467 if(s->effect_param & 0x0F) { ch->fine_portamento_down_param = s->effect_param & 0x0F; } 1468 jar_xm_pitch_slide(ctx, ch, ch->fine_portamento_down_param); 1469 break; 1470 case 4: /* E4y: Set vibrato control */ 1471 ch->vibrato_waveform = s->effect_param & 3; 1472 ch->vibrato_waveform_retrigger = !((s->effect_param >> 2) & 1); 1473 break; 1474 case 5: /* E5y: Set finetune */ 1475 if(NOTE_IS_VALID(ch->current->note) && ch->sample != NULL) { 1476 ch->note = ch->current->note + ch->sample->relative_note + (float)(((s->effect_param & 0x0F) - 8) << 4) / 128.f - 1.f; 1477 ch->period = jar_xm_period(ctx, ch->note); 1478 jar_xm_update_frequency(ctx, ch); 1479 } 1480 break; 1481 case 6: /* E6y: Pattern loop */ 1482 if(s->effect_param & 0x0F) { 1483 if((s->effect_param & 0x0F) == ch->pattern_loop_count) { /* Loop is over */ 1484 ch->pattern_loop_count = 0; 1485 ctx->position_jump = false; 1486 } else { /* Jump to the beginning of the loop */ 1487 ch->pattern_loop_count++; 1488 ctx->position_jump = true; 1489 ctx->jump_row = ch->pattern_loop_origin; 1490 ctx->jump_dest = ctx->current_table_index; 1491 } 1492 } else { 1493 ch->pattern_loop_origin = ctx->current_row; /* Set loop start point */ 1494 ctx->jump_row = ch->pattern_loop_origin; /* Replicate FT2 E60 bug */ 1495 } 1496 break; 1497 case 7: /* E7y: Set tremolo control */ 1498 ch->tremolo_waveform = s->effect_param & 3; 1499 ch->tremolo_waveform_retrigger = !((s->effect_param >> 2) & 1); 1500 break; 1501 case 0xA: /* EAy: Fine volume slide up */ 1502 if(s->effect_param & 0x0F) { ch->fine_volume_slide_param = s->effect_param & 0x0F; } 1503 jar_xm_volume_slide(ch, ch->fine_volume_slide_param << 4); 1504 break; 1505 case 0xB: /* EBy: Fine volume slide down */ 1506 if(s->effect_param & 0x0F) { ch->fine_volume_slide_param = s->effect_param & 0x0F; } 1507 jar_xm_volume_slide(ch, ch->fine_volume_slide_param); 1508 break; 1509 case 0xD: /* EDy: Note delay */ 1510 /* XXX: figure this out better. EDx triggers the note even when there no note and no instrument. But ED0 acts like like a ghost note, EDx (x != 0) does not. */ 1511 if(s->note == 0 && s->instrument == 0) { 1512 unsigned int flags = jar_xm_TRIGGER_KEEP_VOLUME; 1513 if(ch->current->effect_param & 0x0F) { 1514 ch->note = ch->orig_note; 1515 jar_xm_trigger_note(ctx, ch, flags); 1516 } else { 1517 jar_xm_trigger_note(ctx, ch, flags | jar_xm_TRIGGER_KEEP_PERIOD | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION ); 1518 } 1519 } 1520 break; 1521 1522 case 0xE: /* EEy: Pattern delay */ 1523 ctx->extra_ticks = (ch->current->effect_param & 0x0F) * ctx->tempo; 1524 break; 1525 default: 1526 break; 1527 } 1528 break; 1529 1530 case 0xF: /* Fxx: Set tempo/BPM */ 1531 if(s->effect_param > 0) { 1532 if(s->effect_param <= 0x1F) { // First 32 possible values adjust the ticks (goes into tempo) 1533 ctx->tempo = s->effect_param; 1534 } else { //32 and greater values adjust the BPM 1535 ctx->bpm = s->effect_param; 1536 } 1537 } 1538 break; 1539 1540 case 16: /* Gxx: Set global volume */ 1541 ctx->global_volume = (float)((s->effect_param > 0x40) ? 0x40 : s->effect_param) / (float)0x40; 1542 break; 1543 case 17: /* Hxy: Global volume slide */ 1544 if(s->effect_param > 0) { ch->global_volume_slide_param = s->effect_param; } 1545 break; 1546 case 21: /* Lxx: Set envelope position */ 1547 ch->volume_envelope_frame_count = s->effect_param; 1548 ch->panning_envelope_frame_count = s->effect_param; 1549 break; 1550 case 25: /* Pxy: Panning slide */ 1551 if(s->effect_param > 0) { ch->panning_slide_param = s->effect_param; } 1552 break; 1553 case 27: /* Rxy: Multi retrig note */ 1554 if(s->effect_param > 0) { 1555 if((s->effect_param >> 4) == 0) { /* Keep previous x value */ 1556 ch->multi_retrig_param = (ch->multi_retrig_param & 0xF0) | (s->effect_param & 0x0F); 1557 } else { 1558 ch->multi_retrig_param = s->effect_param; 1559 } 1560 } 1561 break; 1562 case 29: /* Txy: Tremor */ 1563 if(s->effect_param > 0) { ch->tremor_param = s->effect_param; } /* Tremor x and y params are not separately kept in memory, unlike Rxy */ 1564 break; 1565 case 33: /* Xxy: Extra stuff */ 1566 switch(s->effect_param >> 4) { 1567 case 1: /* X1y: Extra fine portamento up */ 1568 if(s->effect_param & 0x0F) { ch->extra_fine_portamento_up_param = s->effect_param & 0x0F; } 1569 jar_xm_pitch_slide(ctx, ch, -1.0f * ch->extra_fine_portamento_up_param); 1570 break; 1571 case 2: /* X2y: Extra fine portamento down */ 1572 if(s->effect_param & 0x0F) { ch->extra_fine_portamento_down_param = s->effect_param & 0x0F; } 1573 jar_xm_pitch_slide(ctx, ch, ch->extra_fine_portamento_down_param); 1574 break; 1575 default: 1576 break; 1577 } 1578 break; 1579 default: 1580 break; 1581 } 1582 } 1583 1584 static void jar_xm_trigger_note(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, unsigned int flags) { 1585 if (!(flags & jar_xm_TRIGGER_KEEP_SAMPLE_POSITION)) { 1586 ch->sample_position = 0.f; 1587 ch->ping = true; 1588 }; 1589 1590 if (!(flags & jar_xm_TRIGGER_KEEP_VOLUME)) { 1591 if(ch->sample != NULL) { 1592 ch->volume = ch->sample->volume; 1593 }; 1594 }; 1595 ch->panning = ch->sample->panning; 1596 ch->sustained = true; 1597 ch->fadeout_volume = ch->volume_envelope_volume = 1.0f; 1598 ch->panning_envelope_panning = .5f; 1599 ch->volume_envelope_frame_count = ch->panning_envelope_frame_count = 0; 1600 ch->vibrato_note_offset = 0.f; 1601 ch->tremolo_volume = 0.f; 1602 ch->tremor_on = false; 1603 ch->autovibrato_ticks = 0; 1604 1605 if(ch->vibrato_waveform_retrigger) { ch->vibrato_ticks = 0; } /* XXX: should the waveform itself also be reset to sine? */ 1606 if(ch->tremolo_waveform_retrigger) { ch->tremolo_ticks = 0; } 1607 if(!(flags & jar_xm_TRIGGER_KEEP_PERIOD)) { 1608 ch->period = jar_xm_period(ctx, ch->note); 1609 jar_xm_update_frequency(ctx, ch); 1610 } 1611 ch->latest_trigger = ctx->generated_samples; 1612 if(ch->instrument != NULL) { ch->instrument->latest_trigger = ctx->generated_samples; } 1613 if(ch->sample != NULL) { ch->sample->latest_trigger = ctx->generated_samples; } 1614 } 1615 1616 static void jar_xm_cut_note(jar_xm_channel_context_t* ch) { 1617 ch->volume = .0f; /* NB: this is not the same as Key Off */ 1618 // ch->curr_left = .0f; 1619 // ch->curr_right = .0f; 1620 } 1621 1622 static void jar_xm_key_off(jar_xm_channel_context_t* ch) { 1623 ch->sustained = false; /* Key Off */ 1624 if(ch->instrument == NULL || !ch->instrument->volume_envelope.enabled) { jar_xm_cut_note(ch); } /* If no volume envelope is used, also cut the note */ 1625 } 1626 1627 static void jar_xm_row(jar_xm_context_t* ctx) { 1628 if(ctx->position_jump) { 1629 ctx->current_table_index = ctx->jump_dest; 1630 ctx->current_row = ctx->jump_row; 1631 ctx->position_jump = false; 1632 ctx->pattern_break = false; 1633 ctx->jump_row = 0; 1634 jar_xm_post_pattern_change(ctx); 1635 } else if(ctx->pattern_break) { 1636 ctx->current_table_index++; 1637 ctx->current_row = ctx->jump_row; 1638 ctx->pattern_break = false; 1639 ctx->jump_row = 0; 1640 jar_xm_post_pattern_change(ctx); 1641 } 1642 jar_xm_pattern_t* cur = ctx->module.patterns + ctx->module.pattern_table[ctx->current_table_index]; 1643 bool in_a_loop = false; 1644 1645 /* Read notes information for all channels into temporary pattern slot */ 1646 for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { 1647 jar_xm_pattern_slot_t* s = cur->slots + ctx->current_row * ctx->module.num_channels + i; 1648 jar_xm_channel_context_t* ch = ctx->channels + i; 1649 ch->current = s; 1650 // If there is no note delay effect (0xED) then... 1651 if(s->effect_type != 0xE || s->effect_param >> 4 != 0xD) { 1652 //********** Process the channel slot information ********** 1653 jar_xm_handle_note_and_instrument(ctx, ch, s); 1654 } else { 1655 // read the note delay information 1656 ch->note_delay_param = s->effect_param & 0x0F; 1657 } 1658 if(!in_a_loop && ch->pattern_loop_count > 0) { 1659 // clarify if in a loop or not 1660 in_a_loop = true; 1661 } 1662 } 1663 1664 if(!in_a_loop) { 1665 /* No E6y loop is in effect (or we are in the first pass) */ 1666 ctx->loop_count = (ctx->row_loop_count[MAX_NUM_ROWS * ctx->current_table_index + ctx->current_row]++); 1667 } 1668 1669 /// Move to next row 1670 ctx->current_row++; /* uint8 warning: can increment from 255 to 0, in which case it is still necessary to go the next pattern. */ 1671 if (!ctx->position_jump && !ctx->pattern_break && (ctx->current_row >= cur->num_rows || ctx->current_row == 0)) { 1672 ctx->current_table_index++; 1673 ctx->current_row = ctx->jump_row; /* This will be 0 most of the time, except when E60 is used */ 1674 ctx->jump_row = 0; 1675 jar_xm_post_pattern_change(ctx); 1676 } 1677 } 1678 1679 static void jar_xm_envelope_tick(jar_xm_channel_context_t *ch, jar_xm_envelope_t *env, uint16_t *counter, float *outval) { 1680 if(env->num_points < 2) { 1681 if(env->num_points == 1) { 1682 *outval = (float)env->points[0].value / (float)0x40; 1683 if(*outval > 1) { *outval = 1; }; 1684 } else {; 1685 return; 1686 }; 1687 } else { 1688 if(env->loop_enabled) { 1689 uint16_t loop_start = env->points[env->loop_start_point].frame; 1690 uint16_t loop_end = env->points[env->loop_end_point].frame; 1691 uint16_t loop_length = loop_end - loop_start; 1692 if(*counter >= loop_end) { *counter -= loop_length; }; 1693 }; 1694 for(uint8_t j = 0; j < (env->num_points - 1); ++j) { 1695 if(env->points[j].frame <= *counter && env->points[j+1].frame >= *counter) { 1696 *outval = jar_xm_envelope_lerp(env->points + j, env->points + j + 1, *counter) / (float)0x40; 1697 break; 1698 }; 1699 }; 1700 /* Make sure it is safe to increment frame count */ 1701 if(!ch->sustained || !env->sustain_enabled || *counter != env->points[env->sustain_point].frame) { (*counter)++; }; 1702 }; 1703 }; 1704 1705 static void jar_xm_envelopes(jar_xm_channel_context_t *ch) { 1706 if(ch->instrument != NULL) { 1707 if(ch->instrument->volume_envelope.enabled) { 1708 if(!ch->sustained) { 1709 ch->fadeout_volume -= (float)ch->instrument->volume_fadeout / 65536.f; 1710 jar_xm_CLAMP_DOWN(ch->fadeout_volume); 1711 }; 1712 jar_xm_envelope_tick(ch, &(ch->instrument->volume_envelope), &(ch->volume_envelope_frame_count), &(ch->volume_envelope_volume)); 1713 }; 1714 if(ch->instrument->panning_envelope.enabled) { 1715 jar_xm_envelope_tick(ch, &(ch->instrument->panning_envelope), &(ch->panning_envelope_frame_count), &(ch->panning_envelope_panning)); 1716 }; 1717 }; 1718 }; 1719 1720 static void jar_xm_tick(jar_xm_context_t* ctx) { 1721 if(ctx->current_tick == 0) { 1722 jar_xm_row(ctx); // We have processed all ticks and we run the row 1723 } 1724 1725 jar_xm_module_t* mod = &(ctx->module); 1726 for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { 1727 jar_xm_channel_context_t* ch = ctx->channels + i; 1728 jar_xm_envelopes(ch); 1729 jar_xm_autovibrato(ctx, ch); 1730 if(ch->arp_in_progress && !HAS_ARPEGGIO(ch->current)) { 1731 ch->arp_in_progress = false; 1732 ch->arp_note_offset = 0; 1733 jar_xm_update_frequency(ctx, ch); 1734 } 1735 if(ch->vibrato_in_progress && !HAS_VIBRATO(ch->current)) { 1736 ch->vibrato_in_progress = false; 1737 ch->vibrato_note_offset = 0.f; 1738 jar_xm_update_frequency(ctx, ch); 1739 } 1740 1741 // Effects in volumne column mostly handled on a per tick basis 1742 switch(ch->current->volume_column & 0xF0) { 1743 case 0x50: // Checks for volume = 64 1744 if(ch->current->volume_column != 0x50) break; 1745 case 0x10: // Set volume 0-15 1746 case 0x20: // Set volume 16-32 1747 case 0x30: // Set volume 32-48 1748 case 0x40: // Set volume 48-64 1749 ch->volume = (float)(ch->current->volume_column - 16) / 64.0f; 1750 break; 1751 case 0x60: // Volume slide down 1752 jar_xm_volume_slide(ch, ch->current->volume_column & 0x0F); 1753 break; 1754 case 0x70: // Volume slide up 1755 jar_xm_volume_slide(ch, ch->current->volume_column << 4); 1756 break; 1757 case 0x80: // Fine volume slide down 1758 jar_xm_volume_slide(ch, ch->current->volume_column & 0x0F); 1759 break; 1760 case 0x90: // Fine volume slide up 1761 jar_xm_volume_slide(ch, ch->current->volume_column << 4); 1762 break; 1763 case 0xA0: // Set vibrato speed 1764 ch->vibrato_param = (ch->vibrato_param & 0x0F) | ((ch->current->volume_column & 0x0F) << 4); 1765 break; 1766 case 0xB0: // Vibrato 1767 ch->vibrato_in_progress = false; 1768 jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++); 1769 break; 1770 case 0xC0: // Set panning 1771 if(!ctx->current_tick ) { 1772 ch->panning = (float)(ch->current->volume_column & 0x0F) / 15.0f; 1773 } 1774 break; 1775 case 0xD0: // Panning slide left 1776 jar_xm_panning_slide(ch, ch->current->volume_column & 0x0F); 1777 break; 1778 case 0xE0: // Panning slide right 1779 jar_xm_panning_slide(ch, ch->current->volume_column << 4); 1780 break; 1781 case 0xF0: // Tone portamento 1782 if(!ctx->current_tick ) { 1783 if(ch->current->volume_column & 0x0F) { ch->tone_portamento_param = ((ch->current->volume_column & 0x0F) << 4) | (ch->current->volume_column & 0x0F); } 1784 }; 1785 jar_xm_tone_portamento(ctx, ch); 1786 break; 1787 default: 1788 break; 1789 } 1790 1791 // Only some standard effects handled on a per tick basis 1792 // see jar_xm_handle_note_and_instrument for all effects handling on a per row basis 1793 switch(ch->current->effect_type) { 1794 case 0: /* 0xy: Arpeggio */ 1795 if(ch->current->effect_param > 0) { 1796 char arp_offset = ctx->tempo % 3; 1797 switch(arp_offset) { 1798 case 2: /* 0 -> x -> 0 -> y -> x -> ... */ 1799 if(ctx->current_tick == 1) { 1800 ch->arp_in_progress = true; 1801 ch->arp_note_offset = ch->current->effect_param >> 4; 1802 jar_xm_update_frequency(ctx, ch); 1803 break; 1804 } 1805 /* No break here, this is intended */ 1806 case 1: /* 0 -> 0 -> y -> x -> ... */ 1807 if(ctx->current_tick == 0) { 1808 ch->arp_in_progress = false; 1809 ch->arp_note_offset = 0; 1810 jar_xm_update_frequency(ctx, ch); 1811 break; 1812 } 1813 /* No break here, this is intended */ 1814 case 0: /* 0 -> y -> x -> ... */ 1815 jar_xm_arpeggio(ctx, ch, ch->current->effect_param, ctx->current_tick - arp_offset); 1816 default: 1817 break; 1818 } 1819 } 1820 break; 1821 1822 case 1: /* 1xx: Portamento up */ 1823 if(ctx->current_tick == 0) break; 1824 jar_xm_pitch_slide(ctx, ch, -ch->portamento_up_param); 1825 break; 1826 case 2: /* 2xx: Portamento down */ 1827 if(ctx->current_tick == 0) break; 1828 jar_xm_pitch_slide(ctx, ch, ch->portamento_down_param); 1829 break; 1830 case 3: /* 3xx: Tone portamento */ 1831 if(ctx->current_tick == 0) break; 1832 jar_xm_tone_portamento(ctx, ch); 1833 break; 1834 case 4: /* 4xy: Vibrato */ 1835 if(ctx->current_tick == 0) break; 1836 ch->vibrato_in_progress = true; 1837 jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++); 1838 break; 1839 case 5: /* 5xy: Tone portamento + Volume slide */ 1840 if(ctx->current_tick == 0) break; 1841 jar_xm_tone_portamento(ctx, ch); 1842 jar_xm_volume_slide(ch, ch->volume_slide_param); 1843 break; 1844 case 6: /* 6xy: Vibrato + Volume slide */ 1845 if(ctx->current_tick == 0) break; 1846 ch->vibrato_in_progress = true; 1847 jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++); 1848 jar_xm_volume_slide(ch, ch->volume_slide_param); 1849 break; 1850 case 7: /* 7xy: Tremolo */ 1851 if(ctx->current_tick == 0) break; 1852 jar_xm_tremolo(ctx, ch, ch->tremolo_param, ch->tremolo_ticks++); 1853 break; 1854 case 8: /* 8xy: Set panning */ 1855 break; 1856 case 9: /* 9xy: Sample offset */ 1857 break; 1858 case 0xA: /* Axy: Volume slide */ 1859 if(ctx->current_tick == 0) break; 1860 jar_xm_volume_slide(ch, ch->volume_slide_param); 1861 break; 1862 case 0xE: /* EXy: Extended command */ 1863 switch(ch->current->effect_param >> 4) { 1864 case 0x9: /* E9y: Retrigger note */ 1865 if(ctx->current_tick != 0 && ch->current->effect_param & 0x0F) { 1866 if(!(ctx->current_tick % (ch->current->effect_param & 0x0F))) { 1867 jar_xm_trigger_note(ctx, ch, 0); 1868 jar_xm_envelopes(ch); 1869 } 1870 } 1871 break; 1872 case 0xC: /* ECy: Note cut */ 1873 if((ch->current->effect_param & 0x0F) == ctx->current_tick) { 1874 jar_xm_cut_note(ch); 1875 } 1876 break; 1877 case 0xD: /* EDy: Note delay */ 1878 if(ch->note_delay_param == ctx->current_tick) { 1879 jar_xm_handle_note_and_instrument(ctx, ch, ch->current); 1880 jar_xm_envelopes(ch); 1881 } 1882 break; 1883 default: 1884 break; 1885 } 1886 break; 1887 case 16: /* Fxy: Set tempo/BPM */ 1888 break; 1889 case 17: /* Hxy: Global volume slide */ 1890 if(ctx->current_tick == 0) break; 1891 if((ch->global_volume_slide_param & 0xF0) && (ch->global_volume_slide_param & 0x0F)) { break; }; /* Invalid state */ 1892 if(ch->global_volume_slide_param & 0xF0) { /* Global slide up */ 1893 float f = (float)(ch->global_volume_slide_param >> 4) / (float)0x40; 1894 ctx->global_volume += f; 1895 jar_xm_CLAMP_UP(ctx->global_volume); 1896 } else { /* Global slide down */ 1897 float f = (float)(ch->global_volume_slide_param & 0x0F) / (float)0x40; 1898 ctx->global_volume -= f; 1899 jar_xm_CLAMP_DOWN(ctx->global_volume); 1900 }; 1901 break; 1902 1903 case 20: /* Kxx: Key off */ 1904 if(ctx->current_tick == ch->current->effect_param) { jar_xm_key_off(ch); }; 1905 break; 1906 case 21: /* Lxx: Set envelope position */ 1907 break; 1908 case 25: /* Pxy: Panning slide */ 1909 if(ctx->current_tick == 0) break; 1910 jar_xm_panning_slide(ch, ch->panning_slide_param); 1911 break; 1912 case 27: /* Rxy: Multi retrig note */ 1913 if(ctx->current_tick == 0) break; 1914 if(((ch->multi_retrig_param) & 0x0F) == 0) break; 1915 if((ctx->current_tick % (ch->multi_retrig_param & 0x0F)) == 0) { 1916 float v = ch->volume * multi_retrig_multiply[ch->multi_retrig_param >> 4] 1917 + multi_retrig_add[ch->multi_retrig_param >> 4]; 1918 jar_xm_CLAMP(v); 1919 jar_xm_trigger_note(ctx, ch, 0); 1920 ch->volume = v; 1921 }; 1922 break; 1923 1924 case 29: /* Txy: Tremor */ 1925 if(ctx->current_tick == 0) break; 1926 ch->tremor_on = ( (ctx->current_tick - 1) % ((ch->tremor_param >> 4) + (ch->tremor_param & 0x0F) + 2) > (ch->tremor_param >> 4) ); 1927 break; 1928 default: 1929 break; 1930 }; 1931 1932 float panning, volume; 1933 panning = ch->panning + (ch->panning_envelope_panning - .5f) * (.5f - fabs(ch->panning - .5f)) * 2.0f; 1934 if(ch->tremor_on) { 1935 volume = .0f; 1936 } else { 1937 volume = ch->volume + ch->tremolo_volume; 1938 jar_xm_CLAMP(volume); 1939 volume *= ch->fadeout_volume * ch->volume_envelope_volume; 1940 }; 1941 1942 if (mod->ramping) { 1943 ch->target_panning = panning; 1944 ch->target_volume = volume; 1945 } else { 1946 ch->actual_panning = panning; 1947 ch->actual_volume = volume; 1948 }; 1949 }; 1950 1951 ctx->current_tick++; // ok so we understand that ticks increment within the row 1952 if(ctx->current_tick >= ctx->tempo + ctx->extra_ticks) { 1953 // This means it reached the end of the row and we reset 1954 ctx->current_tick = 0; 1955 ctx->extra_ticks = 0; 1956 }; 1957 1958 // Number of ticks / second = BPM * 0.4 1959 ctx->remaining_samples_in_tick += (float)ctx->rate / ((float)ctx->bpm * 0.4f); 1960 }; 1961 1962 static void jar_xm_next_of_sample(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, int previous) { 1963 jar_xm_module_t* mod = &(ctx->module); 1964 1965 // ch->curr_left = 0.f; 1966 // ch->curr_right = 0.f; 1967 if(ch->instrument == NULL || ch->sample == NULL || ch->sample_position < 0) { 1968 ch->curr_left = 0.f; 1969 ch->curr_right = 0.f; 1970 if (mod->ramping) { 1971 if (ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) { 1972 if (previous > -1) { 1973 ch->end_of_previous_sample_left[previous] = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], ch->curr_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); 1974 ch->end_of_previous_sample_right[previous] = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], ch->curr_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); 1975 } else { 1976 ch->curr_left = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], ch->curr_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); 1977 ch->curr_right = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], ch->curr_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); 1978 }; 1979 }; 1980 }; 1981 return; 1982 }; 1983 if(ch->sample->length == 0) { 1984 return; 1985 }; 1986 1987 float t = 0.f; 1988 uint32_t b = 0; 1989 if(mod->linear_interpolation) { 1990 b = ch->sample_position + 1; 1991 t = ch->sample_position - (uint32_t)ch->sample_position; /* Cheaper than fmodf(., 1.f) */ 1992 }; 1993 1994 float u_left, u_right; 1995 u_left = ch->sample->data[(uint32_t)ch->sample_position]; 1996 if (ch->sample->stereo) { 1997 u_right = ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length]; 1998 } else { 1999 u_right = u_left; 2000 }; 2001 float v_left = 0.f, v_right = 0.f; 2002 switch(ch->sample->loop_type) { 2003 case jar_xm_NO_LOOP: 2004 if(mod->linear_interpolation) { 2005 v_left = (b < ch->sample->length) ? ch->sample->data[b] : .0f; 2006 if (ch->sample->stereo) { 2007 v_right = (b < ch->sample->length) ? ch->sample->data[b + ch->sample->length] : .0f; 2008 } else { 2009 v_right = v_left; 2010 }; 2011 }; 2012 ch->sample_position += ch->step; 2013 if(ch->sample_position >= ch->sample->length) { ch->sample_position = -1; } // stop playing this sample 2014 break; 2015 case jar_xm_FORWARD_LOOP: 2016 if(mod->linear_interpolation) { 2017 v_left = ch->sample->data[ (b == ch->sample->loop_end) ? ch->sample->loop_start : b ]; 2018 if (ch->sample->stereo) { 2019 v_right = ch->sample->data[ (b == ch->sample->loop_end) ? ch->sample->loop_start + ch->sample->length : b + ch->sample->length]; 2020 } else { 2021 v_right = v_left; 2022 }; 2023 }; 2024 ch->sample_position += ch->step; 2025 if (ch->sample_position >= ch->sample->loop_end) { 2026 ch->sample_position -= ch->sample->loop_length; 2027 }; 2028 if(ch->sample_position >= ch->sample->length) { 2029 ch->sample_position = ch->sample->loop_start; 2030 }; 2031 break; 2032 case jar_xm_PING_PONG_LOOP: 2033 if(ch->ping) { 2034 if(mod->linear_interpolation) { 2035 v_left = (b >= ch->sample->loop_end) ? ch->sample->data[(uint32_t)ch->sample_position] : ch->sample->data[b]; 2036 if (ch->sample->stereo) { 2037 v_right = (b >= ch->sample->loop_end) ? ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length] : ch->sample->data[b + ch->sample->length]; 2038 } else { 2039 v_right = v_left; 2040 }; 2041 }; 2042 ch->sample_position += ch->step; 2043 if(ch->sample_position >= ch->sample->loop_end) { 2044 ch->ping = false; 2045 ch->sample_position = (ch->sample->loop_end << 1) - ch->sample_position; 2046 }; 2047 if(ch->sample_position >= ch->sample->length) { 2048 ch->ping = false; 2049 ch->sample_position -= ch->sample->length - 1; 2050 }; 2051 } else { 2052 if(mod->linear_interpolation) { 2053 v_left = u_left; 2054 v_right = u_right; 2055 u_left = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[(uint32_t)ch->sample_position] : ch->sample->data[b - 2]; 2056 if (ch->sample->stereo) { 2057 u_right = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length] : ch->sample->data[b + ch->sample->length - 2]; 2058 } else { 2059 u_right = u_left; 2060 }; 2061 }; 2062 ch->sample_position -= ch->step; 2063 if(ch->sample_position <= ch->sample->loop_start) { 2064 ch->ping = true; 2065 ch->sample_position = (ch->sample->loop_start << 1) - ch->sample_position; 2066 }; 2067 if (ch->sample_position <= .0f) { 2068 ch->ping = true; 2069 ch->sample_position = .0f; 2070 }; 2071 }; 2072 break; 2073 2074 default: 2075 v_left = .0f; 2076 v_right = .0f; 2077 break; 2078 }; 2079 2080 float endval_left = mod->linear_interpolation ? jar_xm_LERP(u_left, v_left, t) : u_left; 2081 float endval_right = mod->linear_interpolation ? jar_xm_LERP(u_right, v_right, t) : u_right; 2082 2083 if (mod->ramping) { 2084 if(ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) { 2085 /* Smoothly transition between old and new sample. */ 2086 if (previous > -1) { 2087 ch->end_of_previous_sample_left[previous] = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], endval_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); 2088 ch->end_of_previous_sample_right[previous] = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], endval_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); 2089 } else { 2090 ch->curr_left = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], endval_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); 2091 ch->curr_right = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], endval_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); 2092 }; 2093 }; 2094 }; 2095 2096 if (previous > -1) { 2097 ch->end_of_previous_sample_left[previous] = endval_left; 2098 ch->end_of_previous_sample_right[previous] = endval_right; 2099 } else { 2100 ch->curr_left = endval_left; 2101 ch->curr_right = endval_right; 2102 }; 2103 }; 2104 2105 // gather all channel audio into stereo float 2106 static void jar_xm_mixdown(jar_xm_context_t* ctx, float* left, float* right) { 2107 jar_xm_module_t* mod = &(ctx->module); 2108 2109 if(ctx->remaining_samples_in_tick <= 0) { 2110 jar_xm_tick(ctx); 2111 }; 2112 ctx->remaining_samples_in_tick--; 2113 *left = 0.f; 2114 *right = 0.f; 2115 if(ctx->max_loop_count > 0 && ctx->loop_count > ctx->max_loop_count) { return; } 2116 2117 for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { 2118 jar_xm_channel_context_t* ch = ctx->channels + i; 2119 if(ch->instrument != NULL && ch->sample != NULL && ch->sample_position >= 0) { 2120 jar_xm_next_of_sample(ctx, ch, -1); 2121 if(!ch->muted && !ch->instrument->muted) { 2122 *left += ch->curr_left * ch->actual_volume * (1.f - ch->actual_panning); 2123 *right += ch->curr_right * ch->actual_volume * ch->actual_panning; 2124 }; 2125 2126 if (mod->ramping) { 2127 ch->frame_count++; 2128 jar_xm_SLIDE_TOWARDS(ch->actual_volume, ch->target_volume, ctx->volume_ramp); 2129 jar_xm_SLIDE_TOWARDS(ch->actual_panning, ch->target_panning, ctx->panning_ramp); 2130 }; 2131 }; 2132 }; 2133 if (ctx->global_volume != 1.0f) { 2134 *left *= ctx->global_volume; 2135 *right *= ctx->global_volume; 2136 }; 2137 2138 // experimental 2139 // float counter = (float)ctx->generated_samples * 0.0001f 2140 // *left = tan(&left + sin(counter)); 2141 // *right = tan(&right + cos(counter)); 2142 2143 // apply brick wall limiter when audio goes beyond bounderies 2144 if(*left < -1.0) {*left = -1.0;} else if(*left > 1.0) {*left = 1.0;}; 2145 if(*right < -1.0) {*right = -1.0;} else if(*right > 1.0) {*right = 1.0;}; 2146 }; 2147 2148 void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples) { 2149 if(ctx && output) { 2150 ctx->generated_samples += numsamples; 2151 for(size_t i = 0; i < numsamples; i++) { 2152 jar_xm_mixdown(ctx, output + (2 * i), output + (2 * i + 1)); 2153 }; 2154 }; 2155 }; 2156 2157 uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx) { 2158 uint64_t total = 0; 2159 uint8_t currentLoopCount = jar_xm_get_loop_count(ctx); 2160 jar_xm_set_max_loop_count(ctx, 0); 2161 while(jar_xm_get_loop_count(ctx) == currentLoopCount) { 2162 total += ctx->remaining_samples_in_tick; 2163 ctx->remaining_samples_in_tick = 0; 2164 jar_xm_tick(ctx); 2165 } 2166 ctx->loop_count = currentLoopCount; 2167 return total; 2168 } 2169 2170 //-------------------------------------------- 2171 //FILE LOADER - TODO - NEEDS TO BE CLEANED UP 2172 //-------------------------------------------- 2173 #undef DEBUG 2174 #define DEBUG(...) do { \ 2175 fprintf(stderr, __VA_ARGS__); \ 2176 fflush(stderr); \ 2177 } while(0) 2178 2179 #define DEBUG_ERR(...) do { \ 2180 fprintf(stderr, __VA_ARGS__); \ 2181 fflush(stderr); \ 2182 } while(0) 2183 2184 #define FATAL(...) do { \ 2185 fprintf(stderr, __VA_ARGS__); \ 2186 fflush(stderr); \ 2187 exit(1); \ 2188 } while(0) 2189 2190 #define FATAL_ERR(...) do { \ 2191 fprintf(stderr, __VA_ARGS__); \ 2192 fflush(stderr); \ 2193 exit(1); \ 2194 } while(0) 2195 2196 2197 int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const char* filename) { 2198 FILE* xmf; 2199 int size; 2200 int ret; 2201 2202 xmf = fopen(filename, "rb"); 2203 if(xmf == NULL) { 2204 DEBUG_ERR("Could not open input file"); 2205 *ctx = NULL; 2206 return 3; 2207 } 2208 2209 fseek(xmf, 0, SEEK_END); 2210 size = ftell(xmf); 2211 rewind(xmf); 2212 if(size == -1) { 2213 fclose(xmf); 2214 DEBUG_ERR("fseek() failed"); 2215 *ctx = NULL; 2216 return 4; 2217 } 2218 2219 char* data = JARXM_MALLOC(size + 1); 2220 if(!data || fread(data, 1, size, xmf) < size) { 2221 fclose(xmf); 2222 DEBUG_ERR(data ? "fread() failed" : "JARXM_MALLOC() failed"); 2223 JARXM_FREE(data); 2224 *ctx = NULL; 2225 return 5; 2226 } 2227 2228 fclose(xmf); 2229 2230 ret = jar_xm_create_context_safe(ctx, data, size, rate); 2231 JARXM_FREE(data); 2232 2233 switch(ret) { 2234 case 0: 2235 break; 2236 case 1: DEBUG("could not create context: module is not sane\n"); 2237 *ctx = NULL; 2238 return 1; 2239 break; 2240 case 2: FATAL("could not create context: malloc failed\n"); 2241 return 2; 2242 break; 2243 default: FATAL("could not create context: unknown error\n"); 2244 return 6; 2245 break; 2246 } 2247 2248 return 0; 2249 } 2250 2251 // not part of the original library 2252 void jar_xm_reset(jar_xm_context_t* ctx) { 2253 for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++) { 2254 jar_xm_cut_note(&ctx->channels[i]); 2255 } 2256 ctx->generated_samples = 0; 2257 ctx->current_row = 0; 2258 ctx->current_table_index = 0; 2259 ctx->current_tick = 0; 2260 ctx->tempo =ctx->default_tempo; // reset to file default value 2261 ctx->bpm = ctx->default_bpm; // reset to file default value 2262 ctx->global_volume = ctx->default_global_volume; // reset to file default value 2263 } 2264 2265 2266 void jar_xm_flip_linear_interpolation(jar_xm_context_t* ctx) { 2267 if (ctx->module.linear_interpolation) { 2268 ctx->module.linear_interpolation = 0; 2269 } else { 2270 ctx->module.linear_interpolation = 1; 2271 } 2272 } 2273 2274 void jar_xm_table_jump(jar_xm_context_t* ctx, int table_ptr) { 2275 for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++) { 2276 jar_xm_cut_note(&ctx->channels[i]); 2277 } 2278 ctx->current_row = 0; 2279 ctx->current_tick = 0; 2280 if(table_ptr > 0 && table_ptr < ctx->module.length) { 2281 ctx->current_table_index = table_ptr; 2282 ctx->module.restart_position = table_ptr; // The reason to jump is to start a new loop or track 2283 } else { 2284 ctx->current_table_index = 0; 2285 ctx->module.restart_position = 0; // The reason to jump is to start a new loop or track 2286 ctx->tempo =ctx->default_tempo; // reset to file default value 2287 ctx->bpm = ctx->default_bpm; // reset to file default value 2288 ctx->global_volume = ctx->default_global_volume; // reset to file default value 2289 }; 2290 } 2291 2292 2293 // TRANSLATE NOTE NUMBER INTO USER VALUE (ie. 1 = C-1, 2 = C#1, 3 = D-1 ... ) 2294 const char* xm_note_chr(int number) { 2295 if (number == NOTE_OFF) { 2296 return "=="; 2297 }; 2298 number = number % 12; 2299 switch(number) { 2300 case 1: return "C-"; 2301 case 2: return "C#"; 2302 case 3: return "D-"; 2303 case 4: return "D#"; 2304 case 5: return "E-"; 2305 case 6: return "F-"; 2306 case 7: return "F#"; 2307 case 8: return "G-"; 2308 case 9: return "G#"; 2309 case 10: return "A-"; 2310 case 11: return "A#"; 2311 case 12: return "B-"; 2312 }; 2313 return "??"; 2314 }; 2315 2316 const char* xm_octave_chr(int number) { 2317 if (number == NOTE_OFF) { 2318 return "="; 2319 }; 2320 2321 int number2 = number - number % 12; 2322 int result = floor(number2 / 12) + 1; 2323 switch(result) { 2324 case 1: return "1"; 2325 case 2: return "2"; 2326 case 3: return "3"; 2327 case 4: return "4"; 2328 case 5: return "5"; 2329 case 6: return "6"; 2330 case 7: return "7"; 2331 case 8: return "8"; 2332 default: return "?"; /* UNKNOWN */ 2333 }; 2334 2335 }; 2336 2337 // TRANSLATE NOTE EFFECT CODE INTO USER VALUE 2338 const char* xm_effect_chr(int fx) { 2339 switch(fx) { 2340 case 0: return "0"; /* ZERO = NO EFFECT */ 2341 case 1: return "1"; /* 1xx: Portamento up */ 2342 case 2: return "2"; /* 2xx: Portamento down */ 2343 case 3: return "3"; /* 3xx: Tone portamento */ 2344 case 4: return "4"; /* 4xy: Vibrato */ 2345 case 5: return "5"; /* 5xy: Tone portamento + Volume slide */ 2346 case 6: return "6"; /* 6xy: Vibrato + Volume slide */ 2347 case 7: return "7"; /* 7xy: Tremolo */ 2348 case 8: return "8"; /* 8xx: Set panning */ 2349 case 9: return "9"; /* 9xx: Sample offset */ 2350 case 0xA: return "A";/* Axy: Volume slide */ 2351 case 0xB: return "B";/* Bxx: Position jump */ 2352 case 0xC: return "C";/* Cxx: Set volume */ 2353 case 0xD: return "D";/* Dxx: Pattern break */ 2354 case 0xE: return "E";/* EXy: Extended command */ 2355 case 0xF: return "F";/* Fxx: Set tempo/BPM */ 2356 case 16: return "G"; /* Gxx: Set global volume */ 2357 case 17: return "H"; /* Hxy: Global volume slide */ 2358 case 21: return "L"; /* Lxx: Set envelope position */ 2359 case 25: return "P"; /* Pxy: Panning slide */ 2360 case 27: return "R"; /* Rxy: Multi retrig note */ 2361 case 29: return "T"; /* Txy: Tremor */ 2362 case 33: return "X"; /* Xxy: Extra stuff */ 2363 default: return "?"; /* UNKNOWN */ 2364 }; 2365 } 2366 2367 #ifdef JAR_XM_RAYLIB 2368 2369 #include "raylib.h" // Need RayLib API calls for the DEBUG display 2370 2371 void jar_xm_debug(jar_xm_context_t *ctx) { 2372 int size=40; 2373 int x = 0, y = 0; 2374 2375 // DEBUG VARIABLES 2376 y += size; DrawText(TextFormat("CUR TBL = %i", ctx->current_table_index), x, y, size, WHITE); 2377 y += size; DrawText(TextFormat("CUR PAT = %i", ctx->module.pattern_table[ctx->current_table_index]), x, y, size, WHITE); 2378 y += size; DrawText(TextFormat("POS JMP = %d", ctx->position_jump), x, y, size, WHITE); 2379 y += size; DrawText(TextFormat("JMP DST = %i", ctx->jump_dest), x, y, size, WHITE); 2380 y += size; DrawText(TextFormat("PTN BRK = %d", ctx->pattern_break), x, y, size, WHITE); 2381 y += size; DrawText(TextFormat("CUR ROW = %i", ctx->current_row), x, y, size, WHITE); 2382 y += size; DrawText(TextFormat("JMP ROW = %i", ctx->jump_row), x, y, size, WHITE); 2383 y += size; DrawText(TextFormat("ROW LCT = %i", ctx->row_loop_count), x, y, size, WHITE); 2384 y += size; DrawText(TextFormat("LCT = %i", ctx->loop_count), x, y, size, WHITE); 2385 y += size; DrawText(TextFormat("MAX LCT = %i", ctx->max_loop_count), x, y, size, WHITE); 2386 x = size * 12; y = 0; 2387 2388 y += size; DrawText(TextFormat("CUR TCK = %i", ctx->current_tick), x, y, size, WHITE); 2389 y += size; DrawText(TextFormat("XTR TCK = %i", ctx->extra_ticks), x, y, size, WHITE); 2390 y += size; DrawText(TextFormat("TCK/ROW = %i", ctx->tempo), x, y, size, ORANGE); 2391 y += size; DrawText(TextFormat("SPL TCK = %f", ctx->remaining_samples_in_tick), x, y, size, WHITE); 2392 y += size; DrawText(TextFormat("GEN SPL = %i", ctx->generated_samples), x, y, size, WHITE); 2393 y += size * 7; 2394 2395 x = 0; 2396 size=16; 2397 // TIMELINE OF MODULE 2398 for (int i=0; i < ctx->module.length; i++) { 2399 if (i == ctx->jump_dest) { 2400 if (ctx->position_jump) { 2401 DrawRectangle(i * size * 2, y - size, size * 2, size, GOLD); 2402 } else { 2403 DrawRectangle(i * size * 2, y - size, size * 2, size, BROWN); 2404 }; 2405 }; 2406 if (i == ctx->current_table_index) { 2407 // DrawText(TextFormat("%02X", ctx->current_tick), i * size * 2, y - size, size, WHITE); 2408 DrawRectangle(i * size * 2, y, size * 2, size, RED); 2409 DrawText(TextFormat("%02X", ctx->current_row), i * size * 2, y - size, size, YELLOW); 2410 } else { 2411 DrawRectangle(i * size * 2, y, size * 2, size, ORANGE); 2412 }; 2413 DrawText(TextFormat("%02X", ctx->module.pattern_table[i]), i * size * 2, y, size, WHITE); 2414 }; 2415 y += size; 2416 2417 jar_xm_pattern_t* cur = ctx->module.patterns + ctx->module.pattern_table[ctx->current_table_index]; 2418 2419 /* DISPLAY CURRENTLY PLAYING PATTERN */ 2420 2421 x += 2 * size; 2422 for(uint8_t i = 0; i < ctx->module.num_channels; i++) { 2423 DrawRectangle(x, y, 8 * size, size, PURPLE); 2424 DrawText("N", x, y, size, YELLOW); 2425 DrawText("I", x + size * 2, y, size, YELLOW); 2426 DrawText("V", x + size * 4, y, size, YELLOW); 2427 DrawText("FX", x + size * 6, y, size, YELLOW); 2428 x += 9 * size; 2429 }; 2430 x += size; 2431 for (int j=(ctx->current_row - 14); j<(ctx->current_row + 15); j++) { 2432 y += size; 2433 x = 0; 2434 if (j >=0 && j < (cur->num_rows)) { 2435 DrawRectangle(x, y, size * 2, size, BROWN); 2436 DrawText(TextFormat("%02X",j), x, y, size, WHITE); 2437 x += 2 * size; 2438 for(uint8_t i = 0; i < ctx->module.num_channels; i++) { 2439 if (j==(ctx->current_row)) { 2440 DrawRectangle(x, y, 8 * size, size, DARKGREEN); 2441 } else { 2442 DrawRectangle(x, y, 8 * size, size, DARKGRAY); 2443 }; 2444 jar_xm_pattern_slot_t *s = cur->slots + j * ctx->module.num_channels + i; 2445 // jar_xm_channel_context_t *ch = ctx->channels + i; 2446 if (s->note > 0) {DrawText(TextFormat("%s%s", xm_note_chr(s->note), xm_octave_chr(s->note) ), x, y, size, WHITE);} else {DrawText("...", x, y, size, GRAY);}; 2447 if (s->instrument > 0) { 2448 DrawText(TextFormat("%02X", s->instrument), x + size * 2, y, size, WHITE); 2449 if (s->volume_column == 0) { 2450 DrawText(TextFormat("%02X", 64), x + size * 4, y, size, YELLOW); 2451 }; 2452 } else { 2453 DrawText("..", x + size * 2, y, size, GRAY); 2454 if (s->volume_column == 0) { 2455 DrawText("..", x + size * 4, y, size, GRAY); 2456 }; 2457 }; 2458 if (s->volume_column > 0) {DrawText(TextFormat("%02X", (s->volume_column - 16)), x + size * 4, y, size, WHITE);}; 2459 if (s->effect_type > 0 || s->effect_param > 0) {DrawText(TextFormat("%s%02X", xm_effect_chr(s->effect_type), s->effect_param), x + size * 6, y, size, WHITE);}; 2460 x += 9 * size; 2461 }; 2462 }; 2463 }; 2464 2465 } 2466 #endif // RayLib extension 2467 2468 #endif//end of JAR_XM_IMPLEMENTATION 2469 //------------------------------------------------------------------------------- 2470 2471 #endif//end of INCLUDE_JAR_XM_H