kummer-degrees

Compute the degree of Kummer extensions
git clone https://git.tronto.net/kummer-degrees
Download | Log | Files | Refs | README | LICENSE

compute_degree.tex (15872B)


      1 \documentclass[10pt,a4paper]{article}
      2 \usepackage[utf8]{inputenc}
      3 \usepackage{amsmath}
      4 \usepackage{amsthm}
      5 \usepackage[all]{xy}
      6 \usepackage{amsfonts}
      7 \usepackage{color}
      8 \usepackage{amssymb}
      9 \usepackage{float}
     10 \usepackage[a4paper, top=3cm, bottom=3cm, left=2.5cm, right=2.5cm]{geometry}
     11 
     12 \DeclareMathOperator{\alg}{alg}
     13 \DeclareMathOperator{\obj}{Obj}
     14 \DeclareMathOperator{\Hom}{Hom}
     15 \DeclareMathOperator{\End}{End}
     16 \DeclareMathOperator{\hol}{Hol}
     17 \DeclareMathOperator{\aut}{Aut}
     18 \DeclareMathOperator{\gal}{Gal}
     19 \DeclareMathOperator{\id}{id}
     20 \DeclareMathOperator{\res}{res}
     21 \DeclareMathOperator{\im}{Im}
     22 \DeclareMathOperator{\Id}{Id}
     23 \DeclareMathOperator{\fib}{Fib}
     24 \DeclareMathOperator{\spec}{Spec}
     25 \DeclareMathOperator{\proj}{Proj}
     26 \DeclareMathOperator{\trdeg}{trdeg}
     27 \DeclareMathOperator{\car}{char}
     28 \DeclareMathOperator{\Frac}{Frac}
     29 \DeclareMathOperator{\reduced}{red}
     30 \DeclareMathOperator{\real}{Re}
     31 \DeclareMathOperator{\imag}{Im}
     32 \DeclareMathOperator{\vol}{vol}
     33 \DeclareMathOperator{\den}{den}
     34 \DeclareMathOperator{\rank}{rank}
     35 \DeclareMathOperator{\lcm}{lcm}
     36 \DeclareMathOperator{\rad}{rad}
     37 \DeclareMathOperator{\ord}{ord}
     38 \DeclareMathOperator{\Br}{Br}
     39 \DeclareMathOperator{\inv}{inv}
     40 \DeclareMathOperator{\Nm}{Nm}
     41 \DeclareMathOperator{\Tr}{Tr}
     42 \DeclareMathOperator{\an}{an}
     43 \DeclareMathOperator{\op}{op}
     44 \DeclareMathOperator{\sep}{sep}
     45 \DeclareMathOperator{\unr}{unr}
     46 \DeclareMathOperator{\et}{\acute et}
     47 \DeclareMathOperator{\ev}{ev}
     48 \DeclareMathOperator{\gl}{GL}
     49 \DeclareMathOperator{\SL}{SL}
     50 \DeclareMathOperator{\mat}{Mat}
     51 \DeclareMathOperator{\ab}{ab}
     52 \DeclareMathOperator{\tors}{tors}
     53 \DeclareMathOperator{\ed}{ed}
     54 
     55 \newcommand{\grp}{\textsc{Grp}}
     56 \newcommand{\set}{\textsc{Set}}
     57 \newcommand{\x}{\mathbf{x}}
     58 \newcommand{\naturalto}{\overset{.}{\to}}
     59 \newcommand{\qbar}{\overline{\mathbb{Q}}}
     60 \newcommand{\zbar}{\overline{\mathbb{Z}}}
     61 
     62 \newcommand{\pro}{\mathbb{P}}
     63 \newcommand{\aff}{\mathbb{A}}
     64 \newcommand{\quat}{\mathbb{H}}
     65 \newcommand{\rea}{\mathbb{R}}
     66 \newcommand{\kiu}{\mathbb{Q}}
     67 \newcommand{\F}{\mathbb{F}}
     68 \newcommand{\zee}{\mathbb{Z}}
     69 \newcommand{\ow}{\mathcal{O}}
     70 \newcommand{\mcx}{\mathcal{X}}
     71 \newcommand{\mcy}{\mathcal{Y}}
     72 \newcommand{\mcs}{\mathcal{S}}
     73 \newcommand{\mca}{\mathcal{A}}
     74 \newcommand{\mcb}{\mathcal{B}}
     75 \newcommand{\mcf}{\mathcal{F}}
     76 \newcommand{\mcg}{\mathcal{G}}
     77 \newcommand{\mct}{\mathcal{T}}
     78 \newcommand{\mcq}{\mathcal{Q}}
     79 \newcommand{\mcr}{\mathcal{R}}
     80 \newcommand{\adl}{\mathbf{A}}
     81 \newcommand{\mbk}{\mathbf{k}}
     82 \newcommand{\m}{\mathfrak{m}}
     83 \newcommand{\p}{\mathfrak{p}}
     84 
     85 \newcommand{\kbar}{\overline{K}}
     86 
     87 \newtheorem{lemma}{Lemma}
     88 \newtheorem{proposition}[lemma]{Proposition}
     89 \newtheorem{conjecture}[lemma]{Conjecture}
     90 \newtheorem{corollary}[lemma]{Corollary}
     91 \newtheorem{definition}[lemma]{Definition}
     92 \newtheorem{theorem}[lemma]{Theorem}
     93 \newtheorem{cond-thm}[lemma]{Conditional Theorem}
     94 \theoremstyle{definition}
     95 \newtheorem{remark}[lemma]{Remark}
     96 
     97 \author{Sebastiano Tronto}
     98 
     99 
    100 \begin{document}
    101 
    102 \begin{lemma}
    103 \label{lemma_zero}
    104 Let $H\leq \mathbb{Q}^\times$ be a finitely generated subgroup. Assume that $H$ does not contain minus a square of $\mathbb{Q}^\times$ or that $m=1$. Then we have
    105 \begin{align*}
    106 \left[\mathbb{Q}_{2^m}\left(\sqrt{H}\right):\mathbb{Q}_{2^m}\right]=\begin{cases}
    107 \#\overline H/2 & \text{ if }m\geq 3\text{ and }\exists b\in H\text{ with }b\equiv\pm2\pmod{\mathbb{Q}^{\times 2}},\\
    108 \#\overline H&\text{ otherwise}.
    109 \end{cases}
    110 \end{align*}
    111 where $\overline{H}$ is the image of $H\cdot \mathbb{Q}^{\times 2}$ in $\mathbb{Q}^\times/\mathbb{Q}^{\times 2}$.
    112 \begin{proof}
    113 Clearly we may assume that $H$ is generated by suqarefree integers $\{g_1,\dots, g_r\}$, where $r=\#\overline H$. In fact, we have that $\mathbb{Q}_{2^m}(\sqrt{H})=\mathbb{Q}_{2^m}(\sqrt{H'})$ for any $H'$ such that $(H\cdot \mathbb{Q}^{\times 2})/\mathbb{Q}^{\times 2}=(H'\cdot \mathbb{Q}^{\times 2})/\mathbb{Q}^{\times 2}$. Recall moreover that by {\color{red}Lemma 13} if there is $\pm2$ times a square in $H$ we can assume that, say, $g_1=\pm 2$.
    114 
    115 Assume first that $m\geq 2$, so that $-1\not\in H$ by assumption. In this case we can work over $\mathbb Q_4$ and use Theorem 18 of \cite{DebryPerucca}. We just need to compute the divisibility parameters over $\mathbb{Q}_4$:
    116 \begin{align*}
    117 d_1=\begin{cases}
    118 0&\text{ if }g_1\neq\pm2\\
    119 1&\text{ if }g_1=\pm2
    120 \end{cases},
    121 &&
    122 d_i=0
    123 \quad \text{ for $i=2,\dots, r$},\\
    124 h_1=\begin{cases}
    125 0&\text{ if } 0\leq g_1\neq2\\
    126 1&\text{ if } -2\neq g_1<0\\
    127 2&\text{ if } g_1=\pm 2
    128 \end{cases}, &&
    129 h_i=\begin{cases}
    130 0&\text{ if }g_i>0\\
    131 1&\text{ if }g_i<0
    132 \end{cases}
    133 \quad \text{ for $i=2,\dots, r$}.
    134 \end{align*}
    135 Thus, keeping the notation of the aformentioned Theorem, we get
    136 \begin{align*}
    137 n_1=\min(1,d_1)=\begin{cases}
    138 0&\text{ if }g_1\neq\pm2\\
    139 1&\text{ if }g_1=\pm2
    140 \end{cases},&& n_i=0\quad \text{ for $i=2,\dots, r$}.
    141 \end{align*}
    142 Thus we get
    143 \begin{align*}
    144 v_2\left[\mathbb{Q}_{2^m}(\sqrt{H}):\mathbb Q_{2^m}\right]&=\max(h_1+n_1,\dots, h_r+n_r,m)-m+r-\sum_{i=1}^rn_i=\\
    145 &=\begin{cases}
    146 \max(3,m)-m+r-\sum_{i=1}^rn_i&\text{ if }\pm2\in H\\
    147 r-\sum_{i=1}^rn_i&\text{ if }\pm2\not \in H
    148 \end{cases}\\
    149 &=\begin{cases}
    150 1+r-1&\text{ if }m=2\text{ and }\pm2\in H\\
    151 r-1&\text{ if }m\geq3\text{ and }\pm2\in H\\
    152 r&\text{ if }\pm2\not\in H
    153 \end{cases}
    154 \end{align*}
    155 which is what we want.
    156 
    157 Assume now that $m=1$. If $-1\not\in H$, we get the desired result directly from Lemma 19 of \cite{DebryPerucca} applied with $G=H$, using the computations that we did in the previous case. In case $-1\in H$, let $H'$ be any subgroup of $H$ such that $H=H'\oplus\langle-1\rangle$. Notice that we have $\#\overline {H'}=r-1$, so that Lemma 19 with $G=H'$ again gives our result, and the Proposition is proved.
    158 \end{proof}
    159 \end{lemma}
    160 
    161 Let $G\leq \mathbb{Q}^\times$ be a finitely generated torsion-free subgroup of rank $r$ and let $M$ and $n$ be integers such that $2^n\,|\,M$. We want to compute the degree
    162 \begin{align}
    163 \label{degree}
    164 \left[\mathbb{Q}_{2^n}\left(G^{1/2^n}\right)\cap \mathbb{Q}_M:\mathbb{Q}_{2^n}\right].
    165 \end{align}
    166 
    167 We will use the same notation as that of Remark 17 of Pietro's file.
    168 
    169 \section{Case $G\leq \mathbb{Q}_+^\times$}
    170 
    171 Assume that $G\leq \mathbb{Q}_+^\times$. In this case, by Remark 17, we have that
    172 \begin{align*}
    173 \mathbb{Q}_{2^n}\left(G^{1/2^n}\right)\cap \mathbb{Q}_M =\mathbb{Q}_{2^n}\left(\sqrt{H}\right).
    174 \end{align*}
    175 
    176 Let $\overline{H}$ be the image of $H$ in $\mathbb{Q^\times}/\mathbb{Q}^{\times 2}$. By Remark 17 and Lemma \ref{lemma_zero} above, the degree (\ref{degree}) is given by
    177 \begin{align*}
    178 \left[\mathbb{Q}_{2^n}\left(G^{1/2^n}\right)\cap \mathbb{Q}_M:\mathbb{Q}_{2^n}\right]=
    179 \begin{cases}
    180 \#\overline H/2 & \text{if }n\geq 3\text{ and }2\in H,\\
    181 \#\overline H&\text{ otherwise}.
    182 \end{cases}
    183 \end{align*}
    184 
    185 \section{General case}
    186 
    187 Let $\mathcal{B}$ be a basis for $G$ and let $\mathcal{B}_i\subseteq \mathcal{B}$ be the subset of basis elements of $2$-divisibility $i$. Call also $L=\max d_i$ the largest $2$-divisiblity parameter. In this way $\mathcal{B}_0,\dots,\mathcal{B}_L$ is a partition of $\mathcal{B}$.
    188 
    189 As explained in ({\color{red}ref}) we may assume that there is at most one negative basis element. Since we have dealt with the $G\subseteq \mathbb{Q}_+$ case in the previous section, we assume that such an element exists and that it has $2$-divisibility $d$. We call this element $g_0$.
    190 
    191 It is (or will be?) clear ({\color{red}but we should explain it}) that it actually does not matter if we have negative elements of divisibility $0$: that case is treated exactly as the case $G\subseteq \mathbb{Q}_+$. In conclusion, we assume that:
    192 \begin{align*}
    193 \mathcal{B}_1,\dots,\mathcal{B}_{d-1},\mathcal{B}_{d+1},\dots,\mathcal{B}_L\subseteq \mathbb{Q}_+,\\
    194 g_0<0 \text{ and }\mathcal{B}_d\setminus \{g_0\}\subseteq \mathbb{Q}_+,\\
    195 d\geq 1.
    196 \end{align*}
    197 
    198 We also let
    199 \begin{align*}
    200 N=\begin{cases}
    201 \max(3,L)&\text{if }d\neq L,\\
    202 \max(3,L+1)&\text{if }d=L.
    203 \end{cases}
    204 \end{align*}
    205 
    206 \subsection{General case, $n=1(\leq d)$}
    207 This case can be treated as follows: let $\mathcal{S}'=\mathcal{S}\cup \{-1\}$ and let $H'$ be constructed from $\mathcal{S}'$ in the exact same way as $H$ is constructed from $\mathcal{S}$. Then it's easy to check ({\color{red}it follows from the ``torsion case'' for $G$, it is for sure in some other file}) that $\mathbb{Q}_{2^n}\left(\sqrt{H'}\right)=\mathbb{Q}_{2^{w'}}\left(\sqrt{H}\right)$, where $w'=\min(v_2(M),n+1)$ (as in Remark 17). Then we can again use Lemma \ref{lemma_zero} and conclude that
    208 \begin{align*}
    209 \left[\mathbb{Q}_{2^n}\left(G^{1/2^n}\right)\cap \mathbb{Q}_M:\mathbb{Q}_{2^n}\right]=
    210 \#\overline{H'},
    211 \end{align*}
    212 where $\#\overline{H'}$ is the image of $H'$ in $\mathbb{Q}^\times/\mathbb{Q}^{\times 2}$.
    213 
    214 \subsection{General case, $n=2\leq d$}
    215 We consider two cases:
    216 \begin{itemize}
    217 \item If $v_2(M)=2$ we have $\left[\mathbb{Q}_{2^n}\left(G^{1/2^n}\right)\cap \mathbb{Q}_M:\mathbb{Q}_{2^n}\right]=\left[\mathbb{Q}_4\left(\sqrt{H}\right):\mathbb{Q}_4\right]=\#\overline{H}$ by Lemma \ref{lemma_zero}.
    218 \item If $v_2(M)\geq 3$ we have
    219 \begin{align*}
    220 \left[\mathbb{Q}_{2^n}\left(G^{1/2^n}\right)\cap \mathbb{Q}_M:\mathbb{Q}_{2^n}\right]&=\left[\mathbb{Q}_8\left(\sqrt{H}\right):\mathbb{Q}_4\right]=\left[\mathbb{Q}_8\left(\sqrt{H}\right):\mathbb{Q}_8\right]\cdot \left[\mathbb{Q}_8:\mathbb{Q}_4\right]=\\&=2\left[\mathbb{Q}_8\left(\sqrt{H}\right):\mathbb{Q}_8\right],
    221 \end{align*}
    222 which, by Lemma \ref{lemma_zero}, is given by $\#\overline{H}$ if $2 \in H$ and by $2\#\overline{H}$ otherwise.
    223 \end{itemize}
    224 
    225 \subsection{General case, $3\leq n\leq d$}
    226 We consider two cases:
    227 \begin{itemize}
    228 \item If $v_2(M)=3$, by lemma \ref{lemma_zero} we have
    229 \begin{align*}
    230 \left[\mathbb{Q}_{2^n}\left(G^{1/2^n}\right)\cap \mathbb{Q}_M:\mathbb{Q}_{2^n}\right]=\left[\mathbb{Q}_8\left(\sqrt{H}\right):\mathbb{Q}_8\right]=\begin{cases}
    231 \#\overline H/2 & \text{ if }\pm 2\in H,\\
    232 \#\overline H&\text{ otherwise}.
    233 \end{cases}
    234 \end{align*}
    235 \item If $v_2(M)\geq 4$ we have
    236 \begin{align*}
    237 \left[\mathbb{Q}_{2^n}\left(G^{1/2^n}\right)\cap \mathbb{Q}_M:\mathbb{Q}_{2^n}\right]&=\left[\mathbb{Q}_{16}\left(\sqrt{H}\right):\mathbb{Q}_8\right]=\left[\mathbb{Q}_{16}\left(\sqrt{H}\right):\mathbb{Q}_{16}\right]\cdot \left[\mathbb{Q}_{16}:\mathbb{Q}_8\right]=\\&=2\left[\mathbb{Q}_{16}\left(\sqrt{H}\right):\mathbb{Q}_{16}\right],
    238 \end{align*}
    239 which, by Lemma \ref{lemma_zero}, is given by $\#\overline{H}$ if $2 \in H$ and by $2\#\overline{H}$ otherwise.
    240 \end{itemize}
    241 
    242 \subsection{General case, $n\geq d+2$}
    243 By the corresponding case in Remark 17, we simply have
    244 \begin{align*}
    245 \left[\mathbb{Q}_{2^n}\left(G^{1/2^n}\right)\cap \mathbb{Q}_M:\mathbb{Q}_{2^n}\right]=\begin{cases}
    246 \#\overline {H'}/2 & \text{ if }\pm 2\in H,\\
    247 \#\overline {H'}&\text{ otherwise}.
    248 \end{cases}
    249 \end{align*}
    250 where $H'$ is constructed from $\mathcal{S}'=\mathcal{S}\cup\{B_0\}$ and $\overline{H'}$ is the image of $H'$ in $\mathbb{Q}^\times/\mathbb{Q}^{\times 2}$.
    251 
    252 \subsection{General case, $n=d+1$}
    253 We distinguish between some cases.
    254 \begin{itemize}
    255 \item Assume $n=2$ (thus $d=3$) and $v_2(g_0)=2$ (i.e. $2$ divides the square-free part of $B_0$, where $g_0=-B_0^{2^d}$). Then we write the square-free part of $B_0$ as $2s$ for some odd square-free $s\in\mathbb{Z}$. Then letting $\mathcal{S}':=\mathcal{S}\cup \{s\}$ and construct $H'$ from $\mathcal{S}'$ in the usual way. By Remark 17 we have
    256 \begin{align*}
    257 \left[\mathbb{Q}_{2^n}\left(G^{1/2^n}\right)\cap \mathbb{Q}_M:\mathbb{Q}_{2^n}\right]=\left[\mathbb{Q}_{2^n}\left(\sqrt{H'}\right):\mathbb{Q}_{2^n}\right]=\#\overline{H'}.
    258 \end{align*}
    259 But we can be more precise and say that
    260 \begin{align*}
    261 \#\overline{H'}=\begin{cases}
    262 2\#\overline{H}&\text{if }\sqrt{xs}\in\mathbb{Q}_M\text{ for some }x\in\mathcal{S}\text{ and }s\not\in \mathcal{S},\\
    263 \#\overline{H}&\text{otherwise}.
    264 \end{cases}
    265 \end{align*}
    266 %\item Assume $n=2$, $2^{n+1}\nmid M$ and either $v_2(g_0)>2$ or $g_0$ is odd. Then $\left[\mathbb{Q}_{2^n}\left(G^{1/2^n}\right)\cap \mathbb{Q}_M:\mathbb{Q}_{2^n}\right]=\#\overline H$.
    267 %\item Assume $n=2$, $2^{n+1}\,|\,M$ and either $v_2(g_0)>2$ or $g_0$ is odd. ({\color{red}TODO})
    268 \item Assume $n\geq 2$ and $2^{n+1}\nmid M$. Then
    269 \begin{align*}
    270 \left[\mathbb{Q}_{2^n}\left(G^{1/2^n}\right)\cap \mathbb{Q}_M:\mathbb{Q}_{2^n}\right]=\begin{cases}
    271 \#\overline H/2 & \text{ if }\pm 2\in H\text{ and }n\geq 3,\\
    272 \#\overline H&\text{ otherwise}.
    273 \end{cases}
    274 \end{align*}
    275 \item Assume $n\geq 2$ and $2^{n+1}\,|\,M$. Following the notation of Remark 17, we have
    276 \begin{align*}
    277 \mathbb{Q}_{2^n}\left(G^{1/2^n}\right)\cap \mathbb{Q}_M=\mathbb{Q}_{2^n}\left(\sqrt{\langle H, H'\rangle}\right)
    278 \end{align*}
    279 hence
    280 \begin{align*}
    281 \left[\mathbb{Q}_{2^n}\left(G^{1/2^n}\right)\cap \mathbb{Q}_M:\mathbb{Q}_{2^n}\right]&=\left[\mathbb{Q}_{2^n}\left(\sqrt{\langle H, H'\rangle}\right):\mathbb{Q}_{2^n}\right]=\\
    282 &=\left[\mathbb{Q}_{2^n}\left(\sqrt{\langle H, H'\rangle}\right):\mathbb{Q}_{2^n}\left(\sqrt{H}\right)\right]\cdot \left[\mathbb{Q}_{2^n}\left(\sqrt{H}\right):\mathbb{Q}_{2^n}\right].
    283 \end{align*}
    284 We claim that
    285 \begin{align*}
    286 \left[\mathbb{Q}_{2^n}\left(\sqrt{\langle H, H'\rangle}\right):\mathbb{Q}_{2^n}\left(\sqrt{H}\right)\right]=\begin{cases}
    287 1&\text{ if }H'=\emptyset\text{ or }H'=\{2\zeta_4\},\\
    288 2&\text{ otherwise}.
    289 \end{cases}
    290 \end{align*}
    291 To see this, notice that $\sqrt{2\zeta_4}=\zeta_8\sqrt{2}\in\mathbb{Q}_4\subseteq\mathbb{Q}_{2^n}\left(\sqrt{H}\right)$, so the first case is settled. Assume now that there is $x=\zeta_{2^n}b\in H'$ with $x\neq 2\zeta_4$. If $y=\zeta_{2^n}c$ is any other element of $H'$, then we have $\sqrt{x/y}=\sqrt{b/c}$. So if $x,y\in \mathbb{Q}_{2^n}\left(\sqrt{\langle H, H'\rangle}\right)$ we have also $\sqrt{b/c}\in \mathbb{Q}_{2^n}\left(\sqrt{\langle H, H'\rangle}\right)$, which by Kummer theory implies $bc\in H$. But then $y\in \mathbb{Q}_{2^n}\left(\sqrt{H}\right)\left(x\right)$. So we have $\mathbb{Q}_{2^n}\left(\sqrt{\langle H, H'\rangle}\right)=\mathbb{Q}_{2^n}\left(\sqrt{H}\right)(x)$, and the sought degree is $\left[\mathbb{Q}_{2^n}\left(\sqrt{H}\right)(x):\mathbb{Q}_{2^n}\left(\sqrt{H}\right)\right]$, which is in fact $2$ ({\color{red}Do we need to explain this better?}).
    292 
    293 We conclude that
    294 \begin{align*}
    295 \left[\mathbb{Q}_{2^n}\left(G^{1/2^n}\right)\cap \mathbb{Q}_M:\mathbb{Q}_{2^n}\right]=\begin{cases}
    296 \#\overline{H}/2&\text{ if } n\geq 3,\,\pm2 \in H\text{ and }H'\subseteq\{2\zeta_4\},\\
    297 \#\overline{H}&\text{ if }(n<3\text{ or }\pm2\not\in H)\text{ and }H'\subseteq \{2\zeta_4\},\\
    298 \#\overline{H}&\text{ if } n\geq 3,\,\pm2 \in H\text{ and }H'\not\subseteq\{2\zeta_4\},\\
    299 2\cdot \#\overline{H}&\text{ if }(n<3\text{ or }\pm2\not\in H)\text{ and }H'\not\subseteq \{2\zeta_4\}.
    300 \end{cases}
    301 \end{align*}
    302 %Let $s$ as in the first subcase of this section and let $\mathcal{C}'$ and $H'$ be as in the last case of Remark 17. We have
    303 %\begin{align*}
    304 %\left[\mathbb{Q}_{2^n}\left(G^{1/2^n}\right)\cap \mathbb{Q}_M:\mathbb{Q}_{2^n}\right]=&\left[\mathbb{Q}_{2^n}\left(\sqrt{\langle H,\zeta_{2^n}H'\rangle}\right):\mathbb{Q}_{2^n}\right]=\\
    305 %=&\left[\mathbb{Q}_{2^n}\left(\sqrt{\langle H,\zeta_{2^n}H'\rangle}\right):\mathbb{Q}_{2^n}\left(\sqrt{H}\right)\right]\cdot \left[\mathbb{Q}_{2^n}\left(\sqrt{H}\right):\mathbb{Q}_{2^n}\right].
    306 %\end{align*}
    307 %Notice that, by construction of $H$ and $H'$, the degree $\left[\mathbb{Q}_{2^n}\left(\sqrt{\langle H,\zeta_{2^n}H'\rangle}\right):\mathbb{Q}_{2^n}\left(\sqrt{H}\right)\right]$ is either $1$
    308 \end{itemize}
    309 
    310 \begin{thebibliography}{10} \expandafter\ifx\csname url\endcsname\relax   \def\url#1{\texttt{#1}}\fi \expandafter\ifx\csname urlprefix\endcsname\relax\def\urlprefix{URL }\fi
    311 
    312 \bibitem{DebryPerucca}  
    313 \textsc{Debry, C. - Perucca, A.}: \emph{Reductions of algebraic integers}, J. Number Theory, {\bf 167} (2016), 259--283.
    314 
    315 \bibitem{PeruccaSgobba}  
    316 \textsc{Perucca, A. - Sgobba, P.}: \emph{Kummer Theory for Number Fields}, preprint.
    317 
    318 \end{thebibliography}
    319 
    320 \end{document}